Abstract:
Provided are a transferred thin film transistor and a method of manufacturing the same. The method includes: forming a source region and a drain region that extend in a first direction in a first substrate and a channel region between the source region and the drain region; forming trenches that extend in a second direction in the first substrate to define an active layer between the trenches, the second direction intersecting the first direction; separating the active layer between the trenches from the first substrate by performing an anisotropic etching process on the first substrate inside the trenches; attaching the active layer on a second substrate; and forming a gate electrode in the first direction on the channel region of the active layer.
Abstract:
According to an exemplary embodiment of the present invention, by providing an apparatus for fabricating a stretchable electronic element including a chamber, a plurality of sample portions loaded into the chamber and spaced apart from each other, while the chamber is maintained at atmospheric pressure, and a movable member moving the plurality of sample portions and compressing each of the plurality of sample portions together while the chamber is kept under vacuum, it is possible to fabricate variable stretchable electronic elements.
Abstract:
Provided is a color changeable device which includes a first substrate and a second substrate that are spaced apart from each other, a first transparent electrode disposed on the first substrate, a second transparent electrode disposed on the second substrate, an electrochromic layer disposed between the first transparent electrode and the second transparent electrode, an organic layer disposed between the first transparent electrode and the electrochromic layer. The organic layer may include a hole injection layer or an electron injection layer. The organic layer may further include a hole transport layer or an electron transport layer.
Abstract:
Provided is a complex display device Including a first substrate and an opposed second substrate, a first electrode, an electrochromic layer, a common electrode, an emission part and a second electrode, laminated between the first substrate and the second substrate one by one, and an organic layer disposed between the first electrode and the electrochromic layer, or between the electrochromic layer and the common electrode. The organic layer of the complex display device may include at least one of a hole injection material, a hole transport material and a mixture thereof, or at least one of an electron injection material, an electron transport material or a mixture thereof.
Abstract:
Provided are a stretchable electronic device and a method of manufacturing the same. The manufacturing method includes forming coil interconnection on a first substrate, forming a first stretchable insulating layer that covers the coil interconnection, forming a second substrate on the first stretchable insulating layer, separating the first substrate from the coiling interconnection and the first stretchable insulating layer, and forming a transistor on the coil interconnection.
Abstract:
Provided is a dual-mode display including a substrate, and a plurality of sub pixels on the substrate. Each of the sub pixels may include an emissive device, a reflective optical filter provided on a surface of the emissive device, and an optical shutter provided on other surface of the emissive device.
Abstract:
Provided are a transferred thin film transistor and a method of manufacturing the same. The method includes: forming a source region and a drain region that extend in a first direction in a first substrate and a channel region between the source region and the drain region; forming trenches that extend in a second direction in the first substrate to define an active layer between the trenches, the second direction intersecting the first direction; separating the active layer between the trenches from the first substrate by performing an anisotropic etching process on the first substrate inside the trenches; attaching the active layer on a second substrate; and forming a gate electrode in the first direction on the channel region of the active layer.