Abstract:
Provided is an energy charging apparatus including a transponder configured to transmit and receive radio energy, and a resonator configured to transmit the radio energy transmitted from the transponder to at least one external device and transmit the radio energy received from the at least one external device to the transponder, wherein each of the transponder and the resonator is provided in a form of a single module.
Abstract:
A method for use with a reflectarray antenna for wireless telecommunication is described. The method involves providing a reflectarray antenna, and adjusting a phase of a scattered field of the reflectarray antenna for generating different radiation patterns for angular mode-based multiplexing. The reflectarray antenna includes a ground plane, a dielectric substrate attached on the ground plane; and a first antenna patch formed on one side of the dielectric substrate. Further, the reflectarray antenna includes a second antenna patch formed adjacent to the first antenna patch with a separation area therebetween; and a phase adjustment member disposed in the separation area. The phase of the scattered field of the antenna is adjusted by changing a DC voltage of the phase adjustment member.
Abstract:
A resonator structure for a wireless power transfer system Includes resonators, which are to transfer wireless power, and a dielectric substance, which includes at least one exposure region formed on the dielectric substance to fix the resonators in a covered shape and to selectively expose parts of the resonators.
Abstract:
Disclosed are a radar image generation method and an apparatus for performing the same. The radar image generation method includes receiving a received signal received at each of radars that are distributed and arranged; generating an input signal by processing the received signal; generating a support vector based on the input signal; updating the support vector; updating a coefficient corresponding to the support vector; and generating a radar image based on the support vector and the coefficient.
Abstract:
A wireless power transmitting device includes: an upper coil including a first tubular spiral coil and a first planar spiral coil disposed beneath the first tubular spiral coil; a lower coil including a second planar spiral coil disposed to face the first planar spiral coil and a second tubular spiral coil disposed beneath the second planar spiral coil; a connecting stub configured to connect the upper coil and the lower coil to each other; and a power source configured to supply a power to the upper coil or the lower coil. The first planar spiral coil and the second planar spiral coil generate an electric field and a magnetic field in a resonance state to transfer at least some of the power from the power source to an external wireless power receiving device through the electric field and the magnetic field.
Abstract:
An apparatus for orbital angular momentum (OAM) mode combination and an antenna apparatus for multi-mode generation are provided. The apparatus for OAM mode combination includes three input ports configured to receive independent OAM mode signals, four output ports configured to output OAM mode signals with the same or different phase delays; and a circuit element configured to simultaneously combine or distribute the OAM mode signals by controlling phases of output signals output through the four output ports to be different depending on the OAM mode signals received through the input ports.
Abstract:
The present invention relates to a reception apparatus. The reception apparatus includes a plurality of reception antennas; and a signal processing unit configured to use reception characteristic of the plurality of reception antennas, wherein the signal processing unit comprises a channel estimation unit configured to respectively estimate a channel response matrix of each signal received via the plurality of reception antennas, and a coding unit configured to define a coding matrix based on an inverse matrix of the estimated channel response matrix, and to obtain a final output signal corresponding to each reception antenna by applying the coding matrix to each received signal.
Abstract:
Disclosed are a method for inter-beam interference reduction using cross polarization and a method for transmitting/receiving a signal. A transmitting method of a base station in a wireless communication system, includes: configuring a first parameter for forming a first beam having first polarization with respect to a terminal located in a first sub-sector, and configuring a second parameter for forming a second beam having second polarization with respect to a terminal located in a second sub-sector; and transmitting a signal to each terminal by forming the first beam using at least one antenna based on the configured first parameter and forming the second beam using the at least one antenna based on the configured second parameter, wherein a frequency band equal to a frequency band of the first sub-sector is allocated to the second sub-sector in a cell in the base station.
Abstract:
An antenna switching apparatus based on spatial modulation includes a plurality of antennas; a control signal generator configured to generate a plurality of switching control signals; and a plurality of switches configured to switch on to apply a transmission signal to the respective antennas according to the respective switching control signals. Further, the antenna switching apparatus includes a delay analyzer configured to receive the transmission signal output from each of the plurality of switches to calculate delay information for synchronizing the switching control signals applied to the respective switches; and a delay adjuster configured to synchronize the switching control signals to apply the synchronized switching control signals to the respective switches according to the calculated delay information.
Abstract:
An antenna switching apparatus based on spatial modulation includes a plurality of antennas; a control signal generator configured to generate a plurality of switching control signals; and a plurality of switches configured to switch on to apply a transmission signal to the respective antennas according to the respective switching control signals. Further, the antenna switching apparatus includes a delay analyzer configured to receive the transmission signal output from each of the plurality of switches to calculate delay information for synchronizing the switching control signals applied to the respective switches; and a delay adjuster configured to synchronize the switching control signals to apply the synchronized switching control signals to the respective switches according to the calculated delay information.