Abstract:
The signal processing is based on the c oncept of using a time-domain aliased (12, TDA) frame as a basis for time segmen tation (14) and spectral analysis (16), performing segmentation in time based on the time-domain aliased frame and performing spectral analysis based on the resulting time segments. The time resolution of the overall "segmented" time-to-frequenc y transform can thus be changed by simply adapting the time segmentation to ob tain a suitable number of time segments based on which spectral analysis is applied. The overall set of spectral coefficients, obtained for all the segments, provides a selectable time-frequency tiling of the original signal frame.
Abstract:
The basic concept of the present invention is to extrapolate a partially known spatial covariance matrix of a multi-channel signal in the parameter domain. The extrapolated covariance matrix is used with the downcoded downmix signal in order to efficiently generate an estimate of a linear combination of the multi-channel signals.
Abstract:
A network processing node (e.g., MGW, MRFP) and method are described herein that can: (1) receive packets on a first heterogeneous link (e.g., wireless link); (2) manipulate the received packets based on known characteristics about a second heterogeneous link (e.g., "Internet" link); and (3) send the manipulated packets on the second heterogeneous link (e.g., "Internet" link). For example, the network processing node can manipulate the received packets by adding redundancy, removing redundancy, frame aggregating (re-packetizing), recovering lost packets and/or re-transmitting packets.
Abstract:
A first signal representation of one or more of the multiple channels is encoded (Sl) in a first encoding process, and a second signal representation of one or more of the multiple channels is encoded (S2) in a second, filter-based encoding process. Filter smoothing can be used to reduce the effects of coding artifacts. However, conventional filter smoothing generally leads to a rather large performance reduction and is therefore not widely used. It has been recognized that coding artifacts are perceived as more annoying than temporary reduction in stereo width, and that they are especially annoying when the coding filter provides a poor estimate of the target signal; the poorer the estimate, the more disturbing artifacts. Therefore, signal-adaptive filter smoothing (S3) is introduced in the second encoding process or a corresponding decoding process as a new general concept for solving the problems of the prior art.
Abstract:
Método para la descodificación espectral perceptual de una señal de audio, que comprende las etapas de: descodificar (210) coeficientes espectrales recuperados de un flujo binario para obtener coeficientes espectrales descodificados de un conjunto inicial de coeficientes espectrales; llenar espectralmente (212) dicho conjunto inicial de coeficientes espectrales obteniendo un conjunto de coeficientes espectrales reconstruidos; comprendiendo dicho llenado espectral (212) un llenado (214), con ruido, de huecos espectrales mediante la fijación de coeficientes espectrales de dicho conjunto inicial de coeficientes espectrales que no se reciben en dicho flujo binario, de manera que sean iguales a elementos obtenidos a partir de dichos coeficientes espectrales descodificados; y convertir (216) dicho conjunto de coeficientes espectrales reconstruidos de un dominio de frecuencia en una señal de audio en un dominio en el tiempo, caracterizado por que dicho llenado (214) con ruido comprende, a su vez, la creación (262) de un libro de códigos espectral concatenando los coeficientes espectrales perceptualmente relevantes de dichos coeficientes espectrales descodificados, con lo cual dicho llenado (214), con ruido, de huecos espectrales comprende la fijación de coeficientes espectrales en dicho conjunto inicial de coeficientes espectrales de manera que sean iguales a elementos seleccionados (266) de dicho libro de códigos espectral de acuerdo con por lo menos un criterio; uno del por lo menos un criterio es seleccionar (266) elementos de dicho libro de códigos espectral en un orden de índices comenzando desde el extremo de baja frecuencia, en donde se asignan índices i a los coeficientes espectrales y se asignan índices j a los elementos del libro de códigos espectral, en donde los huecos espectrales se llenan a ciegas incrementando el índice j en la misma medida que el índice i, y mediante un uso cíclico del libro de códigos espectral en caso de que haya más huecos espectrales que elementos en el libro de códigos espectral.
Abstract:
A method for perceptual spectral decoding comprises decoding of spectral coefficients recovered from a binary flux into decoded spectral coefficients of an initial set of spectral coefficients. The initial set of spectral coefficients are spectrum filled. The spectrum filling comprises noise filling of spectral holes by setting spectral coefficients in the initial set of spectral coefficients not being decoded from the binary flux equal to elements derived from the decoded spectral coefficients. The set of reconstructed spectral coefficients of a frequency domain formed by the spectrum filling is converted into an audio signal of a time domain. A perceptual spectral decoder comprises a noise filler, operating according to the method for perceptual spectral decoding.
Abstract:
The basic concept of the present invention is to extrapolate a partially known spatial covariance matrix of a multi-channel signal in the parameter domain. The extrapolated covariance matrix is used with the downcoded downmix signal in order to efficiently generate an estimate of a linear combination of the multi-channel signals.
Abstract:
A first signal representation of one or more of the multiple channels is encoded in a first encoding process, and a second signal representation of one or more of the multiple channels is encoded in a second, filter-based encoding process. Filter smoothing can be used to reduce the effects of coding artifacts. However, conventional filter smoothing generally leads to a rather large performance reduction and is therefore not widely used. It has been recognized that coding artifacts are perceived as more annoying than temporary reduction in stereo width, and that they are especially annoying when the coding filter provides a poor estimate of the target signal; the poorer the estimate, the more disturbing artifacts. Therefore, signal-adaptive filter smoothing is introduced in the second encoding process or a corresponding decoding process.