Abstract:
Cermets are provided in which the ceramic phase is selected from the group consisting of Cr23C6, Cr7C3, Cr3C2 and mixtures thereof. The binder phase is selected from certain specified Ni/Cr alloys and certain Fe/Ni/Cr alloys. These cermets are particularly useful in protecting surfaces from erosion at high temperatures.
Abstract:
A cermet composition represented by the formula (PQ)(RS)X comprising: a ceramic phase (PQ), a binder phase (RS) and X wherein X is at least one member selected from the group consisting of an oxide dispersoid E, an intermetallic compound F and a derivative compound G wherein said ceramic phase (PQ) is dispersed in the binder phase (RS) as particles of diameter in the range of about 0.5 to 3000 microns, and said X is dispersed in the binder phase (RS) as particles in the size range of about 1 nm to 400 nm.
Abstract:
A cermet composition represented by the formula (PQ)(RS) comprising : a ceramic phase (PQ) and binder phase (RS) wherein, P is at least one metal selected from the group consisting of Group IV, Group V, Group VI elements, Q is boride, R is selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises at least one element selected from Cr, Al, Si and Y.
Abstract:
Cermets are provided in which the ceramic phase is selected from the group consisting of Cr23C6, Cr7C3, Cr3C2 and mixtures thereof. The binder phase is selected from certain specified Ni/Cr alloys and certain Fe/Ni/Cr alloys. These cermets are particularly useful in protecting surfaces from erosion at high temperatures.
Abstract:
Provided are precipitation hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non- ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a precipitation hardened nickel based alloy weld metal composition including greater than or equal to 1.4 wt% of combined aluminum and titanium based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions, wherein the precipitation hardening occurs in the as-welded condition. The nickel based welds do not require a separate heat treatment step after welding to produce advantageous strength properties.
Abstract:
The invention includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Mn and mixtures thereof, Q is carbonitride, R is a metal selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises at least one element selected from Cr, Al, Si and Y.
Abstract:
Cermets, particularly composition gradient cermets can be prepared starting with suitable bulk metal alloys by a reactive heat treatment process involving a reactive environment selected from the group consisting of reactive carbon, reactive nitrogen, reactive boron, reactive oxygen and mixtures thereof.
Abstract:
Cermets are provided in which a substantially stoichiometric metal carbide ceramic phase along with a reprecipitated metal carbide phase, represented by the formula MXCY, is dispersed in a metal binder phase. In MxCy M is Cr, Fe, Ni, Co, Si, Ti, Zr, Hf, V, Nb, Ta, Mo or mixtures thereof, x and y are whole or fractional numerical values with x ranging from 1 to 30 and y from 1 to 6. These cermets are particularly useful in protecting surfaces from erosion and corrosion at high temperatures.
Abstract:
A cermet composition and method for its manufacture represented by the formula (PQ) (RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Al, Si, Mg, Ca, Y, Fe, Mn, Group IV, Group V, Group VI elements, and mixtures thereof, Q is oxide, R is a base metal selected from the group consisting of Fe, Ni Co, Mn and mixtures thereof, S consists essentially of at least one element selected from Cr, Al and Si and at least one reactive wetting element selected from the group consisting of Ti, Zr, Hf, Ta, Sc, Y, La, and Ce.