Abstract:
In certain embodiments, the invention provides methods and devices for assaying single particles in a population of particles, wherein at least two parameters are measured for each particle. One or more parameters can be measured while the particles are in the separate reaction volumes. Alternatively or in addition, one or more parameters can be measured in a later analytic step, e.g., where reactions are carried out in the separate reaction volumes and the reaction products are recovered and analyzed. In particular embodiments, one or more parameter measurements are carried out “in parallel,” i.e., essentially simultaneously in the separate reaction volumes.
Abstract:
Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
Abstract:
The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and/or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and/or homogeneous particle sets, among others, in series and/or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and/or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and/or may be more informative than comparable macrofluidic assays.
Abstract:
Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing. Reaction products may be harvested and/or further analyzed in some cases.
Abstract:
In certain embodiments, the invention provides methods and devices for assaying single particles in a population of particles, wherein at least two parameters are measured for each particle. One or more parameters can be measured while the particles are in the separate reaction volumes. Alternatively or in addition, one or more parameters can be measured in a later analytic step, e.g., where reactions are carried out in the separate reaction volumes and the reaction products are recovered and analyzed. In particular embodiments, one or more parameter measurements are carried out “in parallel,” i.e., essentially simultaneously in the separate reaction volumes.
Abstract:
A microfluidic device includes a pressure source and a control line in fluid communication with the pressure source. The microfluidic device also includes a plurality of valves operated via the control line and an independent valve positioned adjacent the control line and between the pressure source and the plurality of valves.