Abstract:
Systems and techniques are provided for motion sensor adjustment. A signal indicating that a moving heat source was detected by a passive infrared sensor may be received. A signal including a current temperature may be received. It may be determined based on the current temperature and at least one previous temperature that an area in proximity to the passive infrared sensor has experienced a temperature change. In response to the determination that the area in proximity to the passive infrared sensor has experienced a temperature change, the signal indicating that a moving heat source was detected by the passive infrared sensor may be disregarded as a false alert and an indication of motion detected not sent.
Abstract:
Embodiments of the invention describe thermostats that use model predictive controls and related methods. A method of controlling a thermostat using a model predictive control may involve determining a parameterized model. The parameterized model may be used to predicted ambient temperature values for an enclosure. A set of radiant heating system control strategies may be selected for evaluation to determine an optimal control strategy from the set of control strategies. To determine the optimal control strategy, a predictive algorithm may be executed, in which each control strategy is applied to the parameterized model to predict an ambient temperature trajectory and each ambient temperature trajectory is processed in view of a predetermined assessment function. Processing the ambient temperature trajectory in this manner may involve minimizing a cost value associated with the ambient temperature trajectory. The radiant heating system may subsequently be controlled according to the selected optimal control strategy.