Abstract:
System and methods for evaluating and coordinating the design and implementation of a structure is disclosed. The system includes an attributes engine, configured to receive design data for a structure; quantify a plurality of measures of various attributes of the structure based on the design data; from the quantified plurality of measures of various attributes of the structure, determine a structure fitness function, F, whereby: (I) wherein a 1 , a 2 ,...a n are each quantifications of an attribute, respectively, of a structure based on the structure design, and w 1 ,w 2 ,...w n are each weighting values corresponding to each attribute quantification, respectively; and, an interface for providing an indication of the structure fitness function to a user. The structure fitness function may be evaluated and a value provided thereby for a variety of perspectives, such as sum of weighted attributes, a mean function value, etc.
Abstract:
A computer-implemented system for coordinating the design and implementation of a structure is disclosed. The system includes a design workspace, a design engine which receives various inputs and produces a structure design for display in the design workspace, first and second interfaces permitting first and second users, respectively, to view and manipulate a design, either independently or concurrently, and a library of design elements and editing tools accessible to the first and second users. One or more users may be provided with controls limiting the manipulations that other user(s) may make to the design. Change tracking and error and conflict checking are provided to assist with merging design manipulations originating from separate users.
Abstract:
Disclosed herein are embodiments of a balloon-based positioning system and method. In one example embodiment, a system includes a group of at least three balloons deployed in the stratosphere and a control system configured for: determining a first set of spatial relationships relating to the group; determining a second set of spatial relationships relating to ai least a portion of the group and to a reference point; determining a position of the reference point relative to the earth; using the determined first set, the determined second set, and the determined position of the reference point relative to the earth as a basis for determining a position of a target balloon in the group relative to the earth; and transmitting the determined position of the target balloon relative to the earth.
Abstract:
An antenna includes a radiator and a reflector and has a radiation pattern that is based at least in part on a separation distance between the radiator and the reflector. The antenna includes a linkage configured to adjust the separation distance based at least in part on the altitude of the antenna. The resulting radiation pattern can be dynamically adjusted based on altitude of the antenna such that, while the antenna is aloft and the antenna is ground-facing, variations in geographic boundaries and intensity of the radiation received at ground level are at least partially compensated for by the dynamic adjustments to the radiation pattern.
Abstract:
Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section. Computing devices such as personal computers, laptop computers, tablet computers, cellular phones, and countless types of Internet-capable devices are increasingly prevalent in numerous aspects of modern life. As such, the demand for data connectivity via the Internet, cellular data networks, and other such networks, is growing. However, there are many areas of the world where data connectivity is still unavailable, or if available, is unreliable and/or costly. Accordingly, additional network infrastructure is desirable.
Abstract:
Methods and systems disclosed herein relate to determining a projected change in bandwidth demand in a specified area during a specified future time period, repositioning one or more balloons in a high-altitude balloon network based on the projected change in bandwidth demand, and providing, using the one or more balloons, at least a portion of the bandwidth demanded in the specified area during the specified future time period.
Abstract:
A display panel for use with a multi-panel display includes an array of display pixels to emit pixel light. A fiber bundle including an array of fibers is disposed over the array of display pixels. The fiber bundle includes a first end of the array of fibers rigidly fixed adjacent to the array of display pixels and optically aligned with the array of display pixels and a loose fiber portion that permits a second end of the array of fibers opposite the first end to slump-over and move. The fiber bundle receives the pixel light emitted from the array of display pixels into the first end of the array of fibers and emits the pixel light out the second end of the array of fibers.
Abstract:
A computer-implemented subsystem and method is disclosed for receiving user qualification data, comparing that data to certification criteria, and providing user certification according thereto, in the context of a system for designing a structure. A variety of users may be certified, including architects, designers, component and service providers, permitting authorities, builders, financers, future tenants, etc. A wide variety of certifications may be provided including by trade, by attributes of the structure, by intended use of the design system, etc. Certification may be based on general experience, references, time spent with the design system, training completed, examination passed, other certifications, etc. Certification may be stand-alone or may be part of an ongoing continuing education process. The design system may limit actions a user may perform on a design based on certification and certification level. Certified users may be connected with clients and other opportunities through the design system or otherwise.
Abstract:
Disclosed herein are embodiments of a balloon-based positioning system and method. In one example embodiment, a system includes a group of at least three balloons deployed in the stratosphere and a control system configured for: determining a first set of spatial relationships relating to the group; determining a second set of spatial relationships relating to at least a portion of the group and to a reference point; determining a position of the reference point relative to the earth; using the determined first set, the determined second set, and the determined position of the reference point relative to the earth as a basis for determining a position of a target balloon in the group relative to the earth; and transmitting the determined position of the target balloon relative to the earth.
Abstract:
Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section. Computing devices such as personal computers, laptop computers, tablet computers, cellular phones, and countless types of Internet-capable devices are increasingly prevalent in numerous aspects of modern life. As such, the demand for data connectivity via the Internet, cellular data networks, and other such networks, is growing. However, there are many areas of the world where data connectivity is still unavailable, or if available, is unreliable and/or costly. Accordingly, additional network infrastructure is desirable.