Matching an approximately located query image against a reference image set
    22.
    发明授权
    Matching an approximately located query image against a reference image set 有权
    将大致定位的查询图像与参考图像集进行匹配

    公开(公告)号:US08768107B2

    公开(公告)日:2014-07-01

    申请号:US14037681

    申请日:2013-09-26

    Applicant: Google Inc.

    CPC classification number: G06K9/00671 G06F17/30241 G06F17/30247 G06K9/00704

    Abstract: Aspects of the invention pertain to matching a selected image/photograph against a database of reference images having location information. The image of interest may include some location information itself, such as latitude/longitude coordinates and orientation. However, the location information provided by a user's device may be inaccurate or incomplete. The image of interest is provided to a front end server, which selects one or more cells to match the image against. Each cell may have multiple images and an index. One or more cell match servers compare the image against specific cells based on information provided by the front end server. An index storage server maintains index data for the cells and provides them to the cell match servers. If a match is found, the front end server identifies the correct location and orientation of the received image, and may correct errors in an estimated location of the user device.

    Abstract translation: 本发明的方面涉及将选定的图像/照片与具有位置信息的参考图像的数据库进行匹配。 感兴趣的图像可以包括一些位置信息本身,例如纬度/经度坐标和方向。 然而,用户设备提供的位置信息可能不准确或不完整。 感兴趣的图像被提供给前端服务器,前端服务器选择一个或多个单元以匹配图像。 每个单元可以具有多个图像和索引。 一个或多个单元匹配服务器根据前端服务器提供的信息将图像与特定单元进行比较。 索引存储服务器维护单元的索引数据,并将它们提供给单元匹配服务器。 如果找到匹配,则前端服务器识别接收到的图像的正确位置和方向,并且可以校正用户设备的估计位置中的错误。

    Multi-machine distributed learning systems

    公开(公告)号:US10558932B1

    公开(公告)日:2020-02-11

    申请号:US14694762

    申请日:2015-04-23

    Applicant: Google Inc.

    Abstract: A system comprises a network of computers comprising a master computer and slave computers. For a machine learning problem that is partitioned into a number of correlated sub-problems, each master computer is configured to store tasks associated with the machine learning problem, and each of the slave computers is assigned one of the correlated sub-problems. Each slave computer is configured to store variables or parameters or both associated with the assigned one of the correlated sub-problems; obtain information about one or more tasks stored by the master computer without causing conflict with other slave computers with regard to the information; perform computations to update the obtained information and the variables or parameters or both of the assigned sub-problem; send the updated information to the master computer to update the information stored at the master computer; and store the updated variables or parameters or both of the assigned sub-problem.

    TRAINING QUANTUM EVOLUTIONS USING SUBLOGICAL CONTROLS

    公开(公告)号:US20170351967A1

    公开(公告)日:2017-12-07

    申请号:US15171778

    申请日:2016-06-02

    Applicant: Google Inc.

    CPC classification number: G06N99/002 B82Y10/00 G06N99/005

    Abstract: Methods, systems, and apparatus for training quantum evolutions using sub-logical controls. In one aspect, a method includes the actions of accessing quantum hardware, wherein the quantum hardware includes a quantum system comprising one or more multi-level quantum subsystems; one or more control devices that operate on the one or more multi-level quantum subsystems according to one or more respective control parameters that relate to a parameter of a physical environment in which the multi-level quantum subsystems are located; initializing the quantum system in an initial quantum state, wherein an initial set of control parameters form a parameterization that defines the initial quantum state; obtaining one or more quantum system observables and one or more target quantum states; and iteratively training until an occurrence of a completion event.

    Input detection
    26.
    发明授权
    Input detection 有权
    输入检测

    公开(公告)号:US09207760B1

    公开(公告)日:2015-12-08

    申请号:US13630563

    申请日:2012-09-28

    Applicant: Google Inc.

    Abstract: This disclosure involves proximity sensing of eye gestures using a machine-learned model. An illustrative method comprises receiving training data that includes proximity-sensor data. The data is generated by at least one proximity sensor of a head-mountable device (HMD). The data is indicative of light received by the proximity sensor(s). The light is received by the proximity sensor(s) after a reflection of the light from an eye area. The reflection occurs while an eye gesture is being performed at the eye area. The light is generated by at least one light source of the HMD. The method further comprises applying a machine-learning process to the training data to generate at least one classifier for the eye gesture. The method further comprises generating an eye-gesture model that includes the at least one classifier for the eye gesture. The model is applicable to subsequent proximity-sensor data for detection of the eye gesture.

    Abstract translation: 本公开涉及使用机器学习模型进行眼睛手势的接近感测。 一种说明性方法包括接收包括接近传感器数据的训练数据。 数据由头戴式装置(HMD)的至少一个接近传感器产生。 数据表示由接近传感器接收的光。 在来自眼睛区域的光的反射之后,光被接近传感器接收。 当在眼睛区域执行眼睛手势时发生反射。 光由HMD的至少一个光源产生。 该方法还包括将机器学习过程应用于训练数据以生成用于眼睛手势的至少一个分类器。 该方法还包括生成包括用于眼睛手势的至少一个分类器的眼睛手势模型。 该模型适用于随后的接近传感器数据,用于检测眼睛手势。

    TEXT RECOGNITION FOR TEXTUALLY SPARSE IMAGES
    28.
    发明申请
    TEXT RECOGNITION FOR TEXTUALLY SPARSE IMAGES 有权
    TEXTUALLAR SPARSE IMAGES的文本识别

    公开(公告)号:US20150161465A1

    公开(公告)日:2015-06-11

    申请号:US14269777

    申请日:2014-05-05

    Applicant: Google Inc.

    Abstract: A text recognition server is configured to recognize text in a sparse text image. Specifically, given an image, the server specifies a plurality of “patches” (blocks of pixels within the image). The system applies a text detection algorithm to the patches to determine a number of the patches that contain text. This application of the text detection algorithm is used both to estimate the orientation of the image and to determine whether the image is textually sparse or textually dense. If the image is determined to be textually sparse, textual patches are identified and grouped into text regions, each of which is then separately processed by an OCR algorithm, and the recognized text for each region is combined into a result for the image as a whole.

    Abstract translation: 文本识别服务器被配置为识别稀疏文本图像中的文本。 具体地,给定图像,服务器指定多个“补丁”(图像内的像素块)。 系统将文本检测算法应用于修补程序,以确定包含文本的多个修补程序。 文本检测算法的这种应用被用于估计图像的取向并确定图像是文本稀疏的还是文本密集的。 如果图像被确定为文本上稀疏的,则文本补丁被识别并分组成文本区域,然后每个文本区域被OCR算法分开处理,并且将每个区域的识别文本合并为整个图像的结果 。

    Scene classification for place recognition
    29.
    发明授权
    Scene classification for place recognition 有权
    场地识别场景分类

    公开(公告)号:US08798378B1

    公开(公告)日:2014-08-05

    申请号:US13962352

    申请日:2013-08-08

    Applicant: Google Inc.

    CPC classification number: G06K9/00671 G06K2209/27

    Abstract: Aspects of the disclosure pertain to identifying whether or not an image from a user's device is of a place or not. As part of the identification, a training procedure may be performed on a set of training images. The training procedure includes performing measurements of image data for each image in the set to derive a result. The result includes a series of variables for each training image in the set. The series of variable is evaluated for each training image to obtain one or more measurement weights and one or more measurement thresholds. These weights and thresholds are adjusted to set a false positive threshold and a false negative threshold for identifying whether an actual image is of a place type or is some other type of image.

    Abstract translation: 本公开的方面涉及确定来自用户设备的图像是否是位置。 作为识别的一部分,可以对一组训练图像执行训练程序。 训练过程包括对集合中的每个图像执行图像数据的测量以得到结果。 结果包括一组变量,用于集合中的每个训练图像。 对每个训练图像评估一系列变量以获得一个或多个测量权重和一个或多个测量阈值。 调整这些权重和阈值以设置假阳性阈值和假阴性阈值,用于识别实际图像是地方类型还是其他类型的图像。

    Method and apparatus for enabling virtual tags
    30.
    发明授权
    Method and apparatus for enabling virtual tags 有权
    用于启用虚拟标签的方法和装置

    公开(公告)号:US08661053B2

    公开(公告)日:2014-02-25

    申请号:US13674483

    申请日:2012-11-12

    Applicant: Google Inc.

    CPC classification number: G06F17/30268 G06F17/30247 G06F17/3028

    Abstract: A method and apparatus for enabling virtual tags is described. The method may include receiving a first digital image data and virtual tag data to be associated with a real-world object in the first digital image data, wherein the first digital image data is captured by a first mobile device, and the virtual tag data includes metadata received from a user of the first mobile device. The method may also include generating a first digital signature from the first digital image data that describes the real-world object, and in response to the generation, inserting in substantially real-time the first digital signature into a searchable index of digital images. The method may also include storing, in a tag database, the virtual tag data and an association between the virtual tag data and the first digital signature inserted into the index of digital images.

    Abstract translation: 描述了一种用于启用虚拟标签的方法和装置。 该方法可以包括在第一数字图像数据中接收与真实世界对象相关联的第一数字图像数据和虚拟标签数据,其中第一数字图像数据由第一移动设备捕获,并且虚拟标签数据包括 从第一移动设备的用户接收的元数据。 该方法还可以包括从描述真实世界对象的第一数字图像数据生成第一数字签名,并且响应于生成,基本上实时地将第一数字签名插入到可搜索的数字图像索引中。 该方法还可以包括在标签数据库中存储虚拟标签数据以及虚拟标签数据与插入数字图像索引中的第一数字签名之间的关联。

Patent Agency Ranking