Abstract:
Methods and apparatus for high shear reacting and/or mixing of moving fluid streams of materials employ an interdiffusing and reacting zone formed in the space between two stationary surfaces, the surfaces being spaced apart a maximum distance of the sum of the thicknesses of the back-to-back boundary layers of the materials and/or resulting materials on the surfaces, to a value such that any third layer between the two boundary layers is too thin to support agitation characterized by turbulent convection and/or to cause channeling. The materials are interdiffused by high speed laminar shear produced by the flow of the materials rather than mixed by macroscopic convection, the materials being driven by high velocity inlet feeds, auxiliary high pressure gas flow pumped into the reaction/mixing zone, or auxiliary high pressure gas flow created as an evolving gaseous byproduct of any chemical reaction that may occur.
Abstract:
New methods of operating surface reactors, and such reactors, particularly spinning disk reactors, require that a first reactant is fed to a reactor surface (20) and forms a thin radially outward moving film (60) thereon in a reaction passage (42) formed between the reaction surface (20) and a parallel, closely spaced (less than 1 mm) retaining surface (40). The passage thickness is precisely controllable and the surfaces (20, 40) move relative to one another so that strong shear is applied to the material between them. A second reactant is fed to the surface (20) as a second thin film (65) that as it enters the first film (60), preferably perpendicularly, it is immediately merged therewith along a correspondingly very narrow interaction line (66) by the shear at a rate such as to break up molecular clusters in the films, so that their molecules can aggressively and completely interact by forced interdiffusion. In spinning disk (18) apparatus the first film (60) is fed along the spin axis (14), while subsequent films (65, etc.) are fed at respective distances from the axis (14) such that there is adequate shear for the molecular cluster disruption. Preferably each film (65, etc.) after the first (60) is fed into the reaction passage (42) through a respective thin annular nozzle producing a thin circular film (65) that simultaneously merges with the first film (60) along its entire length.
Abstract:
New methods of operating surface reactors, and such reactors, particularly spinning disk reactors, require that a first reactant is fed to a reactor surface (20) and forms a thin radially outward moving film (60) thereon in a reaction passage (42) formed between the reaction surface (20) and a parallel, closely spaced (less than 1 mm) retaining surface (40). The passage thickness is precisely controllable and the surfaces (20, 40) move relative to one another so that strong shear is applied to the material between them. A second reactant is fed to the surface (20) as a second thin film (65) that as it enters the first film (60), preferably perpendicularly, it is immediately merged therewith along a correspondingly very narrow interaction line (66) by the shear at a rate such as to break up molecular clusters in the films, so that their molecules can aggressively and completely interact by forced interdiffusion. In spinning disk (18) apparatus the first film (60) is fed along the spin axis (14), while subsequent films (65, etc.) are fed at respective distances from the axis (14) such that there is adequate shear for the molecular cluster disruption. Preferably each film (65, etc.) after the first (60) is fed into the reaction passage (42) through a respective thin annular nozzle producing a thin circular film (65) that simultaneously merges with the first film (60) along its entire length.
Abstract:
2142193 9404275 PCTABS00030 High-shear treated materials are passed through a high-shear treatment zone which allows the coexistence of free supra-Kolmogoroff eddies larger than the smallest possible Kolmogoroff eddy diameter and forced sub-Kolmogoroff eddies smaller than this diameter. This zone includes a subsidiary higher-shear zone for suppressing these free eddies. The passage walls (40, 44, 102, 108) move relative to one another transverse to the flow to force the simultaneous development of supra-Kolmogoroff and sub-Kolmogoroff eddies while maintaining liquid films adherent to the passage surfaces. The movement produces only forced sub-Kolmogoroff eddies in the susidiary zone while maintaining a non-turbulent flow. Ultrasonic oscillations (52) may be applied to cause elastohydrodynamic pressure and viscosity increases and/or production of smaller sub-Kolmogoroff eddies. One apparatus includes an inner cylinder rotatable (46) inside a hollow outer cylinder (38), another consists of two circular coaxial plates, and the rotational axis can be vertical or horizontal.
Abstract:
New methods of operating surface reactors, and such reactors, particularly spinning disk reactors, require that a first reactant is fed to a reactor surface (20) and forms a thin radially outward moving film (60) thereon in a reaction passage (42) formed between the reaction surface (20) and a parallel, closely spaced (less than 1 mm) retaining surface (40). The passage thickness is precisely controllable and the surfaces (20, 40) move relative to one another so that strong shear is applied to the material between them. A second reactant is fed to the surface (20) as a second thin film (65) that as it enters the first film (60), preferably perpendicularly, it is immediately merged therewith along a correspondingly very narrow interaction line (66) by the shear at a rate such as to break up molecular clusters in the films, so that their molecules can aggressively and completely interact by forced interdiffusion. In spinning disk (18) apparatus the first film (60) is fed along the spin axis (14), while subsequent films (65, etc.) are fed at respective distances from the axis (14) such that there is adequate shear for the molecular cluster disruption. Preferably each film (65, etc.)after the first (60) is fed into the reaction passage (42) through a respective thin annular nozzle producing a thin circular film (65) that simultaneously merges with the first film (60) along its entire length.
Abstract:
New methods of operating surface reactors, and such reactors, particularly spinning disk reactors, require that a first reactant is fed to a reactor surface (20) and forms a thin radially outward moving film (60) thereon in a reaction passage (42) formed between the reaction surface (20) and a parallel, closely spaced (less than 1 mm) retaining surface (40). The passage thickness is precisely controllable and the surfaces (20, 40) move relative to one another so that strong shear is applied to the material between them. A second reactant is fed to the surface (20) as a second thin film (65) that as it enters the first film (60), preferably perpendicularly, it is immediately merged therewith along a correspondingly very narrow interaction line (66) by the shear at a rate such as to break up molecular clusters in the films, so that their molecules can aggressively and completely interact by forced interdiffusion. In spinning disk (18) apparatus the first film (60) is fed along the spin axis (14), while subsequent films (65, etc.) are fed at respective distances from the axis (14) such that there is adequate shear for the molecular cluster disruption. Preferably each film (65, etc.) after the first (60) is fed into the reaction passage (42) through a respective thin annular nozzle producing a thin circular film (65) that simultaneously merges with the first film (60) along its entire length.
Abstract:
PCT No. PCT/US93/07931 Sec. 371 Date Feb. 21, 1995 Sec. 102(e) Date Feb. 21, 1995 PCT Filed Aug. 24, 1993 PCT Pub. No. WO94/04275 PCT Pub. Date Mar. 3, 1994High-shear treated materials are passed through a high-shear treatment zone which allows the coexistence of free supra-Kolmogoroff eddies larger than the smallest possible Kolmogoroff eddy diameter and forced sub-Kolmogoroff eddies smaller than this diameter. This zone includes a subsidiary higher-shear zone for suppressing these free eddies. The passage walls (40, 44, 102, 108) move relative to one another transverse to the flow to force the simultaneous development of supra-Kolmogoroff and sub-Kolmogoroff eddies while maintaining liquid films adherent to the passage surfaces. The movement produces only forced sub-Kolmogoroff eddies in the subsidiary zone while maintaining a non-turbulent flow. Ultrasonic oscillations (52) may be applied to cause elastohydrodynamic pressure and viscosity increases and/or production of smaller sub-Kolmogoroff eddies. One apparatus includes an inner cylinder rotatable (46) inside a hollow outer cylinder (38), another consists of tow circular coaxial plates, and the rotational axis can be vertical or horizontal.
Abstract:
The invention provides fluid handling apparatus which may be heat exchange apparatus or fluid reaction apparatus. The apparatus is provided with an interrupter structure for disrupting the fluid boundary layers at the walls of the apparatus and promoting mixing of the separated boundary layers with the adjacent core layers. One interrupter structure comprises a plurality of longitudinally-spaced interrupter elements mounted on a core rod, each element comprising a plurality of blade-like members each of at least approximately spherical segment profile in side elevation, the members extending mutually radially outward relative to one another to touch or nearly touch the said surface or surfaces adjacent the elements. The elements are spaced longitudinally from one another the distance required to provide wake interference flow of the fluid, wherein the vortex upstream of one element cooperates with the vortex downstream of the next element in the fluid path. In a shell and tube type exchanger the bladed type of structure may be provided in the tubes interiors, while a spherical type of interrupter structure is provided in the shell contacting the tube exteriors.
Abstract:
Son metodos novedosos de operacion de reactores de superficie, y tales reactores, en particular los reactores de disco giratorio, donde se requiere alimentar un primer reactivo a una superficie de reactor (20), para formar una pelicula delgada que avanza radialmente hacia afuera (60) y salir a un pasaje de reaccion (42) formado entre la superficie de reaccion (20) y una superficie de retencion (40) paralela y cercana. El espesor del pasaje se puede controlar con precision, y las superficies (20, 40) se mueven entre si, de modo que se aplica una gran fuerza cortante al material entre ellas. Un segundo reactivo se alimenta a la superficie, como una segunda pelicula delgada (65) que al entrar a la primera pelicula (60), de preferencia en direccion perpendicular, se mezcla con ella de inmediato a lo largo de una linea de interaccion (66) muy delgada, en tal forma que sus moleculas pueden interactuar en forma agresiva y total mediante interdifusion forzada. En el aparato de disco giratorio (18), la primera pelicula (60) se alimenta a lo largo del eje de giro (14), mientras que las siguientes capas (65, etc.) se alimentan a distancias respectivas del eje (14), de tal manera que haya una fuerza cortante adecuada para desintegrar los grupos moleculares. De preferencia, cada pelicula (65, etc.) despues de la primera (60), se alimenta al pasaje de reaccion (42) a traves de una boquilla anular respectiva que produce una capa delgada circular (65), que al mismo tiempo se mezcla con la primera pelicula (60) a lo largo de toda su longitud.
Abstract:
High-shear treated materials are passed through a high-shear treatment zone which allows the coexistence of free supra- Kolmogoroff eddies larger than the smallest possible Kolmogoroff eddy diamet er and forced sub-Kolmogoroff eddies smaller than this diameter. This zone includes a subsidiary higher-shear zone for suppressing these free eddies. The passage walls (40, 44, 102, 108) move relative io one another transverse to the flow to force the simultaneous development of supra-Kolmogoroff and sub-Kolmogoroff eddies while maintaining liquid films adherent to the passag e surfaces. The movement produces only forced sub-Kolmogoroff eddies in the susidiary zone while maintaining a non-turbule nt flow. Ultrasonic oscillations (52) may be appli- ed to cause elastohydrodynamic pressure and viscosity increases and/or production of smaller sub-Kolmogoroff eddies. One ap- paratus includes an inner cylinder rotatable (46) inside a hollow outer cylinder (38), another consists of two circular coaxial plates, and the rotational axis can be vertical or horizontal.