Abstract:
PROBLEM TO BE SOLVED: To provide an apparatus and a method for generating, storing and reading a plurality of error correction coded data sets. SOLUTION: The apparatus and the method are disclosed to receive information and to generate, store, and read a plurality of error correction coded data sets using that information. Applicants' storage controller receives information and generates (N) sets of error correction coded data, wherein (N) is greater than or equal to 2. The method writes, for each value of (i), the (i)th set of error correction coded data to the (i)th data storage medium, wherein (i) is greater than or equal to 1 and less than or equal to (N). If applicants' storage controller receives a request to read the information, then applicants' method reads each of the (N) error correction coded data sets, generates the information using the (N) error correction coded data sets, and returns the information to the requestor. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method for storing and retrieving information using holographic data storage media. SOLUTION: The method provides original data, generates a first image of that original data, and encodes that first image in a holographic data storage medium at a first storage location. The method then generates a second image of the original data, where the second image differs from the first image, and encodes the second image in a holographic data storage medium at a second storage location, where the second storage location differs from the first storage location. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To improve reliability for multi-layer media in order to enhance the security of data. SOLUTION: In the method for reading and writing data to a plurality of layers of a storage medium, a data stream U having a series of data bits is received and stored to a multi-layer rotating storage medium. Each data bit U(J) is encoded into X representation bits. A first representation bit B(1, J) is recorded onto a first layer of the storage medium, the second representation bit B(2, J) is recorded onto a second layer of the storage medium, etc. When a request to read the recorded data U from the storage medium is subsequently received, a plurality of the X representation bits are read back from the storage medium and are decoded into the original data bit U(J). In one embodiment, encoding may be performed with a convolution encoding algorithm and decoding with a PRML decoding algorithm. In another embodiment, Reed Solomon encoding/decoding may be employed. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide an apparatus for increasing speed and reliability of storage of holographic information, and a method for using the apparatus. SOLUTION: The holographic information recording apparatus 200 is provided with a laser light source 105, a beam splitter 110, and a reflective spacial light modulator 210. The beam splitter 110 provides a reference beam 220 and a data carrier beam 230, the reference beam 220 is directed without reflection toward a holographic data storage medium 195. The data carrier beam 230 is reflected off the reflective spatial light modulator 210 to form data beam 240 comprising an image of information. The reference beam interacts with the data beam 240 to form a hologram 250 comprising the image. That hologram 250 is encoded in a holographic data storage medium 195. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
Bei einem Ansatz zum Sichern und Wiederherstellen von einem oder mehreren Klondateibäumen erzeugen ein oder mehrere Prozessoren eine Klonverwaltungstabelle. Ein oder mehrere Prozessoren zeichnen Klonverwaltungsinformationen zu jeder Klondatei in der Klonverwaltungstabelle auf. Zum Sichern einer Klondatei aktualisieren ein oder mehrere Prozessoren die Klonverwaltungsinformationen und speichern einen oder mehrere Datenblöcke, die sich in dem einen oder den mehreren Klondateibäumen befinden. Zum Wiederherstellen einer Klondatei analysieren ein oder mehrere Prozessoren Klonverwaltungsinformationen und stellen einen oder mehrere Datenblöcke in der Klondatei wieder her. Zum Wiederherstellen einer Klondatei-Elterndatei analysieren ein oder mehrere Prozessoren Klonverwaltungsinformationen und stellen einen oder mehrere Datenblöcke in der Klondatei-Elterndatei wieder her. Zum Wiederherstellen eines Klondateibaums analysieren ein oder mehrere Prozessoren Klonverwaltungsinformationen und stellen einen oder mehrere Datenblöcke in dem Klondateibaum wieder her.
Abstract:
A method for assigning a transmission control protocol/internet protocol address to a blade server when it is newly added to a blade centre. When a new blade server is added, a blade discovery module identifies the configuration data from the new blade server, which comprises a unique number of the blade centre, a unique number of a blade slot and a media access control address for a network interface of the new blade server. This data is then sent to an address assignment module, which then derives an IP address based on the unique blade centre and slot numbers and assigns it to the server.
Abstract:
Share nothing cluster system (SNCS) 100 comprises backup server 126 for backing up data elements 135. SNCS 100 includes common namespace component 101 (e.g. file system mount point), nodes 110-112 with storage devices 120-122, and local table 128. Data 135 is partitioned in block sequences 137A-137E distributed across storage 120-122 as set of blocks BS1-BS3. For example BS1 comprises sequences 137A, 137C. Placement information is stored in table 128. After a request for backing-up data 135, each node identifies corresponding block sequences and sends them to the back up server alongside information on the ordering of block sequences, the node, and the data element (e.g. filename). The server organises the information for a block sequence as an entry in backup information table 300. It adds a first flag after complete reception and storage of each sequence and a second flag at completion of the back-up for the entire data element.
Abstract:
Bereitgestellt wird ein Ansatz zum Verwalten eines Datenpakets. Für eine Netzwerkauslastung wird ermittelt, dass sie einen Schwellenwert überschreitet. Ein Sender-Computer ermittelt einen Hashauszug des Datenpakets durch Anwenden einer Hashfunktion, die auf Grundlage einer Zentraleinheitsauslastung ausgewählt wird. Wenn sich der Hashauszug in einer Sender-Hashtabelle befindet, sendet der Sender-Computer, ohne das Datenpaket zu senden, den Hashauszug und einen Index, der auf den Hashauszug verweist, sodass ein Empfänger-Computer den Index zum Auffinden eines übereinstimmenden Hashauszugs und des Datenpakets in einer Empfänger-Hashtabelle verwenden kann. Wenn sich der Hashauszug nicht in der Sender-Hashtabelle befindet, fügt der Sender-Computer das Datenpaket und den Hashauszug zu der Sender-Hashtabelle hinzu und sendet das Datenpaket und den Hashauszug an den zweiten Computer, um die Integrität des Datenpakets auf Grundlage des Hashauszugs zu prüfen.
Abstract:
An apparatus and method are disclosed to generate convolution encoded data. The method supplies a convolution encoder. The method receives original data and generates convolution encoded original data. The method receives revised data. The method generates an XOR data stream by Exclusive OR'ing the original data with the revised data, forms a convolution encoded XOR data stream using the convolution encoder, and Exclusive ORs the convolution encoded XOR data stream with the convolution encoded original data to generate convolution-encoded revised data.
Abstract:
A dual-path optical recording medium (100) and an apparatus (200) for accessing such are disclosed. The dual-path optical recording medium (100) includes a substrate (114), an intermediate recording layer (118), a holographic recording layer (104) and a dichronic mirror layer (110). The intermediate recording layer (118) is a rewritable data storage layer with a relatively low storage capacity. The holographic recording layer (104) is a write-once data storage layer with a relatively high storage capacity. The dichronic mirror layer (110) is located between the holographic recording layer (104) and the intermediate recording layer (118). The apparatus (200) for accessing the dual-path optical recording medium (100) includes a first light module (131) capable of generating a first laser light (121), and a second light module (132) capable of generating a second laser light (122).