Abstract:
Systems and methods for stabilizing mid-infrared light generated by difference frequency mixing may include a mode locked Er fiber laser that generates pulses, which are split into a pump arm and a wavelength shifting, signal arm. Pump arm pulses are amplified in Er doped fiber. Shifting arm pulses are amplified in Er doped fiber and shifted to longer wavelengths in Raman- shifting fiber or highly nonlinear fiber, where they may be further amplified by Tm doped fiber, and then optionally further wavelength shifted. Pulses from the two arms can be combined in a nonlinear crystal such as orientation-patterned gallium phosphide, producing a mid-infrared difference frequency, as well as nonlinear combinations (e.g., sum frequency) having near infrared and visible wavelengths. Optical power stabilization can be achieved using two wavelength ranges with spectral filtering and multiple detectors acquiring information for feedback control. Controlled fiber bending can be used to stabilize optical power.
Abstract:
Low phase noise radio frequency (RF) sources generated by voltage controlled oscillators (VCOs) are described. Optical modulators driven by a VCO may be used to generate optical side-bands to cw lasers. The spectral extent of said side-bands can be increased via frequency broadening in highly nonlinear waveguides. Free running mode locked low phase noise comb oscillators can be used as reference oscillators to generate beat signals between those side-bands and individual comb modes at distal spectral regions, thereby creating an error signal used to reduce the phase noise of VCOs and the generation of low phase noise RF signals. VCO phase noise may be reduced by using free-running modelocked comb lasers phase locked to external frequency references, by omitting a reference comb and using a nonlinear interferometer for generating an error signal, or by locking a slave comb to the modulation frequency of an intra-cavity modulator driven by the VCO.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates. A CDSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
Abstract:
Systems and methods for providing laser texturing of solid substrates are disclosed. The texturing may be used to provide grayscale images obtainable from substrates, which may include steel, aluminum, glass, and silicon. In some embodiments, images may be obtainable from the substrate by modifying the reflective, diffractive, and/or absorptive features of the substrate or the substrate surface by forming random, periodic, and/or semi-periodic micro-structure features on the substrate (or substrate surface) by an ultrafast laser pulse train. The micro-structure features may have average sizes slightly larger, comparable to, and/or smaller than the wavelength of light of the ultrafast pulse train. The ultrafast pulse train may be modulated in order to vary, for example, optical exposure time, pulse train intensity, laser polarization, laser wavelength, or a combination of the aforementioned. The micro-structure features may be modified by controlling the environment near the substrate (e.g., the atmosphere, which may include reactive chemical species in some embodiments). In some embodiments, the micro-structure may be fixed for long-term preservation using enamel and/or polymer or other overcoats. The ultrafast pulse train and the substrate may be scanned with respect to each other to provide different optical energies to different regions of the substrate (or substrate surface). In some embodiments, the image is provided by making one or more passes of the ultrafast laser pulse train relative to the substrate.
Abstract:
By writing non-linear chirp into fiber Bragg gratings, greater control over dispersion compensation in CPA systems is obtained, such that, for example, the dispersion profile of the fiber Bragg grating and a bulk compressor may be matched. An iterative method of writing the fiber grating can reduce the group delay ripple to very low levels; and adaptive control of the fiber grating dispersion profile can further reduce these levels, while in addition offering greater acceptable yield in the manufacture of such gratings. Fiber Bragg gratings may be designed so as to provide customized pulse shapes optimized for various end uses, such as micromachining, for example, and may also be used to counteract gain-narrowing in a down-stream amplifier.
Abstract:
High power parallel fiber arrays for the amplification of high peak power pulses are described. Fiber arrays based on individual fiber amplifiers as well as fiber arrays based on multi-core fibers can be implemented. The optical phase between the individual fiber amplifier elements of the fiber array is measured and controlled using a variety of phase detection and compensation techniques. High power fiber array amplifiers can be used for EUV and X-ray generation as well as pumping of parametric amplifiers.
Abstract:
High power parallel fiber arrays for the amplification of high peak power pulses are described. Fiber arrays based on individual fiber amplifiers as well as fiber arrays based on multi-core fibers can be implemented. The optical phase between the individual fiber amplifier elements of the fiber array is measured and controlled using a variety of phase detection and compensation techniques. High power fiber array amplifiers can be used for EUV and X-ray generation as well as pumping of parametric amplifiers.
Abstract:
By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.