Abstract:
The invention relates to graft copolymers—based on non-cross-linked acrylate soft phases from which styrenic monomers are grafted—with a defined micro-structure, having a high transparency, toughness and weather resistance (UV-stability), a process for their preparation and their use, and also to polymer blends comprising said graft copolymers and styrenic polymers, and shaped articles produced therefrom and their use.
Abstract:
Thermoplastic molding compositions can be used in hydrofluoro olefin containing areas, comprising components A, B, C and D: 10 to 35 wt.-% ABS graft rubber copolymer A obtained by emulsion polymerization; 50 to 70 wt.-% SAN copolymer B; 4 to 20 wt.-% elastomeric SBC block copolymer C, and 4 to 20 wt.-% ABS graft rubber copolymer D obtained by mass polymerization.
Abstract:
The invention relates to a method for producing thermoplastic molding materials based on acrylonitrile-butadiene-styrene copolymers (ABS) having improved surface properties, in particular improved resistance of the surface quality to storage in a warm, humid environment, and having a reduced content of residual monomers. The invention further relates to the use of a fluid bed dryer and/or a flash dryer in the production of thermoplastic ABS molding materials in order to improve the surface quality. The invention further relates to the use of a fluid bed dryer and/or a flash dryer in the production of thermoplastic ABS molding materials having a reduced content of residual monomers. The invention further relates to ABS molding materials that can be produced by means of the method according to the invention and to molded parts (e.g., molded bodies, films, and coatings) that can be produced from the thermoplastic molding materials according to the invention.
Abstract:
The invention relates to a method for producing thermoplastic fibre composites made from a thermoplastic matrix (M) comprising a thermoplastic moulding compound (A) and reinforcing fibres (B). Said method has technical advantages when it comprises the following steps: i) a flat structure (F) made of reinforcing fibres (B) is provided, ii) the flat structure (F) is introduced into a matrix M, iii) functional groups of the matrix are reacted with polar groups of the reinforcing fibres (B), iv) the fibre composite materials is consolidated.
Abstract:
The invention relates to a process for the production of thermoplastic moulding compounds, in particular ABS, wherein at least a first reagent (11) and a second reagent (12) of the thermoplastic moulding compounds are fed to a gear pump (10) which comprises a housing and at least a first gear wheel that is rotatable relative to the housing about a first axis, and a second gear wheel that is rotatable relative to the housing about a second axis, wherein a loop conduit (29) is provided, and wherein the reagents (11, 12) are pressed in a loop through the loop conduit (29) and passing the gear wheels, whereby the reagents (11, 12) are dispersed to form a dispersion (15) in the gear pump (10). The invention also relates to a thermoplastic moulding compound that is produced by the inventive process.
Abstract:
The invention relates to a process for producing moulding compositions containing: a) from 55 to 85% by weight of copolymer A composed of vinylaromatic monomer A1 and a,B-unsaturated monomer A2; b) from 15 to 45% by weight of graft copolymer B with particle size from 50 to 550 nm composed of: B 1: from 60 to 80% by weight of rubbery graft base B 1 composed of: B11: from 80 to 99% by weight of at least one C2-C8-alkyl acrylate, B12: from 0.5 to 2.5% by weight of cyclic crosslinking agent, B13: from 0 to 2% by weight of non-cyclic crosslinking agent, B2: from 20 to 40% by weight of at least one graft shell B2 composed of: B21: from 60 to 75% by weight of a styrene, B22: from 25 to 40% by weight of acrylonitrile, c) from 0 to 10% by weight of additives C; where the reaction time of the polymerization for producing the graft base B 1 is in the range from 2 to 5 h, and the addition of the starting materials takes place over at least two chronological segments.
Abstract:
The invention relates to the use of molding materials for 3-D printing, containing components A, B1, B2, and C, wherein: A:5 to 100 wt % of at least one vinyl aromatic/diene block copolymer A, containing: a) 30 to 95 wt % of at least one vinyl aromatic and b) 5 to 70 wt % of at least one diene, B1:0 to 95 wt % of at least one polymer B1 selected from the group comprising standard polystyrene, high-impact polystyrene (HIPS), styrene/acrylonitrile copolymers, α-methylstyrene/acrylonitrile copolymers, styrene/maleic anhydride copolymers, styrene/phenylmaleimide copolymers, styrene/methylmethacrylate copolymers, styrene/acrylonitrile/maleic anhydride copolymers, styrene/acrylonitrile/phenylmaleimide copolymers, methylstyrene/acrylonitrile/methylmethacrylate copolymers, α-methylstyrene/acrylonitrile/t-butyl methacrylate copolymers, and styrene/acrylonitrile/t-butyl methacrylate copolymers, B2:0 to 60 wt % of one or more further polymers B2 selected from: polycarbonates, polyamides, poly(meth)acrylates, polyesters, semicrystalline polyolefins, and polyvinyl chloride, C:0 to 50 wt % of common additives and auxiliary agents, wherein the viscosity (measured as per ISO 11443) of the molding material at shear rates of 1 to 10 1/s and at temperatures of 250° C. is not greater than 1×105 Pa*s and the melt volume rate (MVR, measured as per ISO 1133 at 220° C. and 10 kg load) is more than 6 ml/10 min.
Abstract:
A process for producing styrene monomers from styrene oligomers comprises the following steps: a) providing a composition (A) comprising at least one type of styrene oligomer, wherein the composition (A) comprises at least 15 wt.-% of styrene dimers and/or styrene trimers; b) providing a depolymerization reactor (R) with a reaction zone (Z); c) feeding the composition (A) into the reaction zone (Z) of the reactor (R); d) depolymerizing the at least one type of styrene oligomer in the reaction zone (Z) to obtain a composition (B), comprising styrene monomers; e) removing the composition (B) from the reaction zone (Z); and f) isolating the styrene monomers from the composition (B); wherein the temperature (T) inside the reaction zone (Z) is above 500° C. to below 800° C. and the average residence time (tA) of the composition (A) in the reaction zone (Z) is greater than 0.01 s and less than 60 s.
Abstract:
An emulsion polymerization process for preparation of ABS graft copolymer latex having reduced residual monomer content, wherein a grafting step c) comprises the steps: c1): feeding of 10 to 45 wt.-% of styrene and acrylonitrile in one portion to agglomerated butadiene rubber latex and addition of redox system initiator, then polymerization; c2): feeding remaining monomers in portions or continuously and further addition of redox system initiator; c3): addition of inorganic free radical initiator and continuation of polymerization, leads to ABS graft copolymers and thermoplastic molding compositions which can be used in the automotive industry.
Abstract:
The invention relates to thermoplastic molding compositions (T) comprising 10 to 99% by weight, based on the total weight of the molding composition (T), of at least one type of recycled polymer material (A), containing 20 to 100% by weight, based on recycled material (A), of recycled acrylonitrile-butadiene-styrene copolymer (A1); up to 80% by weight of at least one recycled styrene-acrylonitrile copolymer (A2); up to 10% by weight of recycled polymeric impurities (A3), different from (A1) and (A2); 0.1 to 30% by weight, based on the total weight of the molding composition (T), of at least one graft copolymer (B), different from (A); 0.1 to 18% by weight, based on the molding composition (T), of block copolymer (C); and optionally up to 89.8% by weight of further polymer component (D), different from (A), (B) and (C); optionally up to 30% by weight of filler and/or reinforcing agent (E); and optionally up to 30% by weight of further additive (F).