Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems for hybrid low dropout regulator (LDO) architecture and realization to provide high power supply rejection ratio (PSRR) and high conversion efficiency (CE), and other benefits. The hybrid LDO may be coupled with dual rails for its analog LDO branch and digital LDO respectively to achieve high PSRR and high CE by utilizing the hybrid architecture with several feedback loops. Other embodiments may be described and claimed.
Abstract:
A 3-level ripple quantization scheme provides power transistor (MOS) strength-tuning mechanism focused on the transient clamp period. The 3-level ripple quantization scheme solves the digital low dropout's (D-LDO's) tradeoff between silicon area (e.g., decoupling capacitor size), quiescent power consumption (e.g., speed of comparators), wide load range, and optimal output ripple. The 3-level ripple quantization scheme eliminates oscillation risk from either wide dynamic range or parasitic by exploiting asynchronous pulse patterns. As such, ripple magnitude for both fast di/dt loading events and various steady-state scenarios are shrunk effectively, resulting significant efficiency benefits.
Abstract:
Spin Hall Effect (SHE) magneto junction memory cells (e.g., magnetic tunneling junction (MTJ) or spin valve based memory cells) are used to implement high entropy physically unclonable function (PUF) arrays utilizing stochastics interactions of both parameter variations of the SHE-MTJ structures as well as random thermal noises. An apparatus is provided which comprises: an array of PUF devices, wherein an individual device of the array comprises a magnetic junction and an interconnect, wherein the interconnect comprises a spin orbit coupling material; a circuitry to sense values stored in the array, and to provide an output; and a comparator to compare the output with a code.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems for hybrid low dropout regulator (LDO) architecture and realization to provide high power supply rejection ratio (PSRR) and high conversion efficiency (CE), and other benefits. The hybrid LDO may be coupled with dual rails for its analog LDO branch and digital LDO respectively to achieve high PSRR and high CE by utilizing the hybrid architecture with several feedback loops. Other embodiments may be described and claimed.
Abstract:
Generally, this disclosure describes an apparatus. The apparatus includes switch controller circuitry and zero crossing logic circuitry. The switch controller circuitry is to control a conduction state of a high side switch and a low side switch in a DC to DC converter. The zero crossing logic circuitry includes phase comparator circuitry, a first clocking circuitry and a second clocking circuitry. Each clocking circuitry includes one or more delay elements. The zero crossing logic circuitry is to monitor a switch node voltage, Vsw, and to determine whether Vsw is greater than a reference, Vref. The switch controller circuitry is to turn off a low side switch if Vsw is greater than Vref while the low side switch is turned on, Vsw greater than Vref corresponding to a negative inductor current.
Abstract:
A system for increasing the life of a battery cell by limiting the charging of the battery to less than full charge in response to a predicted electricity draw of a connected device being less than the full capacity of the battery before a predicted recharge will occur. The current draw of the connected device may be affected by the amount of time before a next recharge and environmental factors. The system may further comprise one or more sensors to gather data pertaining to environmental conditions that may be used in the calculation of a charge termination value. The charge termination value is an amount of charge to power the device for a duration of time at least until a predicted recharge begins.
Abstract:
Described are embodiments of methods, apparatuses, and systems for link power management in an I/O interconnect. An apparatus for link power management in an I/O interconnect of a computer apparatus may include a switching fabric having a first switch and a second switch, configured to simultaneously transport first data packets over a first path of a link between a port of the first switch and a port of the second switch and second data packets over a second path of the link. The apparatus may include a power management unit configured to modify a power state of the port of the first switch based at least in part on relative power states of the first path and the second path. Other embodiments may be described and claimed.
Abstract:
A mobile device may be provided that includes an input port, an adjusting device, and a voltage regulator. The input port may receive power from an alternative power source or a DC power supply. The mobile device may receive the power from the input port, adjust a power characteristic of the power, and provide the power having the adjusted power characteristic. The voltage regulator may receive the adjusted power and provide a regulated voltage to a load.
Abstract:
An apparatus and method is described herein for providing a dynamic pulse scheme for a voltage supply. A load (current) demand event of a processor is either predicted and/or detected. In response to the current demand event, such as a change in the current demand; a temporary, transient voltage pulse is generated by a voltage supply to compensate for the current transient demand. As result, dynamic voltage supply pulses generated based on the load current or the prediction of the load current demand increases performance, decreases power consumption, and saves expensive addition of compensation components, such as capacitors to a processor package.
Abstract:
A computational current sensor, that enhances traditional Kalman filter based current observer techniques, with transient tracking enhancements and an online parasitic parameter identification that enhances overall accuracy during steady state and transient events while guaranteeing convergence. During transient operation (e.g., a voltage droop), a main filter is bypassed with estimated values calculated from a charge balance principle to enhance accuracy while tracking transient current surges of the DC-DC converter. To address the issue of dependency on a precise model parameter information and further improve accuracy, an online identification algorithm is included to track the equivalent parasitic resistance at run-time.