Abstract:
A method, components and a system are provided for implementing power control for wireless communication transmissions that provides, inter alia, a remedy for the mismatch of initial transmission power (312) for NRT data by estimating a bias error (324) based and adjusting the transmission power by a compensation amount for an averaged bias error estimation (323) over all data set transmissions, such as sequential Temp-DCH allocations in a UMTS system. An alternative approach for a UMTS system estimates the bias error at a RNC based on an averaged transmit code power measurement by a base station (310) and applies a bias error compensation to the initial DL transmit power at the RNC.
Abstract:
A transmitting station receives a transmit power command and a reference signal. The transmit power command indicates an increase or decrease in transmission power for the transmitting station. A received power level of the reference signal is measured and the measured reference signal received power level is compared to a transmit power level of the reference signal to produce a pathloss estimate of the reference signal. A size of a change in transmit power level is determined using the pathloss estimate. A transmission power level of the transmitting station is adjusted in response to the transmit power command in an amount of the determined change in size. A communication is transmitted at the adjusted transmission power level.
Abstract:
The present invention is a system and method which controls outer loop transmit power for transmission power of an uplink/downlink communication in a spread spectrum time division communication. The system receives a communication from a base station (901) and determines an error rate (902) on the received communication. The system then distinguishes between static and dynamic channels, produces a static adjustment value (908), and characterizes the dynamic channels to generate a dynamic adjustment value. The target power level is then adjusted by the static and dynamic adjustment values, setting the transmission power level (912).
Abstract:
A method and apparatus for decomposing a channel matrix in a wireless communication system are disclosed. A channel matrix H is generated for channels between transmit antennas and receive antennas (202). A Heπnitian matrix A=HHH or A=HHn is created (204). A Jacobi process is cyclically performed on the matrix A to obtain Q and DA matrixes such that A=QDAQH (206). DA is a diagonal matrix obtained by singular value decomposition (SVD) on the A matrix. In each Jacobi transformation, real part diagonalization is performed to annihilate real parts of off-diagonal elements of the matrix and imaginary part diagonalization is performed to annihilate imaginary parts of off -diagonal elements of the matrix after the real part diagonalization. U, V and DH matrixes of H matrix are then calculated from the Q and DA matrices. DH is a diagonal matrix comprising singular values of the H matrix (208).
Abstract:
A method and apparatus for optimizing the system capacity of an Orthogonal Frequency Division Multiplexing (OFDM) system that uses with Multiple-Input Multiple-Output (MIMO) antennas. In a receiver, a target quality of service (QoS) metric and reference data rate are set. The target QoS metric may be set to a predetermined value and/or may be adjusted dynamically with respect to packet error rate (PER) by a slow outer-loop control processor. The QoS of received signals are measured and compared to the target QoS. Depending on the comparison, the receiver generates a channel quality indicator (CQI) which is sent back to the transmitting transmitter. The CQI is a one or two bit indicator which indicates to the transmitter to disable, adjust or maintain data transmission rates of particular sub-carriers, groups of sub-carriers per transmit antenna, or groups of sub-carriers across all transmit antennas. At the transmitter, the transmitted data rate is disabled, adjusted or maintained. At the receiver, the target QoS metric and reference data rate are adjusted accordingly. This process is repeated for each data frame of each sub-carrier group.
Abstract:
An apparatus and method is provided for dynamic range power control of a wireless downlink communication signal (100), such that target signal quality adjustments are held temporarily (102) when it is apparent that transmit power control commands will not produce the desired response at the transmitting station. Comparisons of measured received signals to thresholds are performed to determine whether the transmitting station has either reached the maximum or minimum transmit power, in which case the target signal quality adjustment is controlled accordingly. When normal transmit power is detected (121), the target signal quality adjustments are allowed to resume as usual.
Abstract:
A wireless communication system and method for controlling transmission power to maintain a received signal-to-interference ratio (SIR) as close as possible to a target SIR. A received quality is maintained as close as possible to a target quality based on block error rate (BLER). When a target BLER is converted to an initial target SIR, an error may occur due to a channel condition mismatch, since the target SIR required for the target BLER varies with channel conditions. An outer loop power control process is used to set a target SIR for each coded composite transport channel (CCTrCH) based on the required target BLER. The process adjusts a SIR step size parameter to maximize the convergence speed of the process.
Abstract:
A transmitting station receives a transmit power command and a reference signal. The transmit power command indicates an increase or decrease in transmission power for the transmitting station. A received power level of the reference signal is measured and the measured reference signal received power level is compared to a transmit power level of the reference signal to produce a pathloss estimate of the reference signal. A size of a change in transmit power level is determined using the pathloss estimate. A transmission power level of the transmitting station is adjusted in response to the transmit power command in an amount of the determined change in size. A communication is transmitted at the adjusted transmission power level.