Abstract:
A sensor interface operates to communicate a sensed quantity along one or more processing pathways and in different data representations. The signal representations can be swapped along one or more locations of the signal processing branches. These branches are independent from one another and combined at an interface component for transmission along a single path or node for a control unit.
Abstract:
The present disclosure relates to a system having a plurality of electronic devices interconnected by way of dielectric waveguides. In some embodiments, the system has a plurality of electronic devices respectively including a data element and a transceiver element. The data element has a plurality of terminals configured to respectively output and receive data. The transceiver is configured to transmit or receive the data as a wireless signal that distinctly identifies data from different ones of the plurality of terminals. A shared resource component has a shared transceiver configured to generate a shared wireless signal that transmits a shared signal to the plurality of electronic devices by way of a plurality of dielectric waveguides. Respective ones of the plurality of dielectric waveguides are disposed between the shared resource component and one of the plurality of electronic devices.
Abstract:
A magnetic sensor, may sense a first magnetic field component corresponding to a first axis of a magnetic field produced by a magnet. The magnetic sensor may sense a second magnetic field component corresponding to a second axis of the magnetic field. The magnetic sensor may determine information that defines potential positions of a movable object associated with the magnet. Each potential position, of the potential positions, may be defined by a first magnetic field range for the first magnetic field component and a second magnetic field range for the second magnetic field component. The magnetic sensor may identify a position of the movable object based on the first magnetic field component, the second magnetic field component, and the information that defines the potential positions. The magnetic sensor may provide an output based on identifying the position of the movable object.
Abstract:
Embodiments relate to machines comprising a movable part, transceiver circuitry configured to transmit a radio signal towards the movable part and to receive a reflection of the radio signal from the movable part, evaluation circuitry configured to determine a position or a speed of the movable part based on at least the received radio signal. A distance between an antenna of the transceiver circuitry and the movable part is less than 5 cm.
Abstract:
The present disclosure relates to a system having a plurality of electronic devices interconnected by way of dielectric waveguides. In some embodiments, the system has a plurality of electronic devices respectively including a data element and a transceiver element. The data element has a plurality of terminals configured to respectively output and receive data. The transceiver is configured to transmit or receive the data as a wireless signal that distinctly identifies data from different ones of the plurality of terminals. A shared resource component has a shared transceiver configured to generate a shared wireless signal that transmits a shared signal to the plurality of electronic devices by way of a plurality of dielectric waveguides. Respective ones of the plurality of dielectric waveguides are disposed between the shared resource component and one of the plurality of electronic devices.
Abstract:
A receiver includes a receiver circuit to receive a pulse width modulated signal, which assumes a first signal level, a second signal level and an intermediate signal level between the first signal level and the second signal level. The receiver further includes a quantization circuit to determine a value encoded in the signal based on an intermediate time period between a first transition and an intermediate transition and based on a main time period between the first transition and a second transition. The first transition comprises the first signal level, wherein the intermediate transition includes the intermediate signal level. The second transition includes the second signal level.
Abstract:
An integrated sensor device (130) according to an embodiment includes a sensing element (140) and a communication interface (150) to communicate with an external control device (110). The communication interface (150) includes a receiver circuit (160) to receive, from the external device, a signal indicating a request to change a transmission mode, and a transmitter circuit (170) to change the transmission mode based on the received signal. By using an embodiment, it may be possible to improve a trade-off between a robustness of a system comprising a sensor even under adverse operational conditions, simplifying such an implementation or architecture, its energy consumption and a bandwidth of its infrastructure.
Abstract:
A sensor system utilizing adaptively selected carrier frequencies is disclosed. The system includes a system bus, a bus master, and a sensor. The system bus is configured to transfer power and data. The bus master is coupled to the system bus and is configured to provide power to the bus and receive data from the bus. The sensor is coupled to the system bus and is configured to transfer data on the bus using an adaptively selected carrier frequency.
Abstract:
An apparatus for detecting a force effect comprises two electrical conductors which run at a distance from one another, a deformable spacer which is arranged between the two electrical conductors, a first measuring device which is electrically connected to one end of the two electrical conductors in each case and an electrical component which is electrically connected to the respective other end of the two electrical conductors. The first measuring device is designed to detect a change in a variable which can be measured by the measuring device, which change is caused by a change in the distance between the two electrical conductors which is caused by a force effect at at least one place along the two electrical conductors, in order to detect the force effect.
Abstract:
A data transmission system comprising an Automotive Sensor Network System (ASNS) connected to a plurality of source locations via a common bus, wherein the ASNS is configured to ascertain the source from which the data-frames and first package checksum are received and based on the ascertainment of the source, appropriate decoding methods are used to calculate the ASNS location data-frame checksums and the ASNS location package checksums. A higher order redundancy check is done over a series of data-frames to detect errors in the reception caused by temporary high interference that may exist in the transmission path.