Abstract:
A display apparatus with a touch detection function capable of improving accuracy is provided. The display apparatus includes: a pixel array having a plurality of pixels arranged in a matrix form; and a plurality of signal wires arranged in the pixel array. Here, when an externally-detecting object is detected, a plurality of coils having areas overlapping with each other are formed of a plurality of signal wires (drive electrodes) among the plurality of signal wires, and a magnetic field generated in the plurality of respective coils are superimposed in an overlapped area by supplying a drive signal to the plurality of coils.
Abstract:
According to one embodiment, a touch control method of a touch control device which drives a touch sensor to collect data indicating a position of at least one object to be detected, and outputs the data to an external device, the touch sensor having plural first electrodes arranged to extend a first direction, and plural second electrodes arranged to extend in a second direction crossing the first direction, the touch control method includes driving the first electrodes in a self-detection mode to specify at least one of the first electrodes which detects the object, and driving the specified at least one first electrode and the second electrodes in a partial mutual detection mode to collect data indicating the position of the object.
Abstract:
A display device includes a signal processing unit that receives input signals, and calculates output signals to a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The signal processing unit calculates a frequency of pixels belonging to each of a plurality of partitions using a light quantity of a surface light source. The signal processing unit calculates an index value for each of the partitions by at least multiplying the cumulative frequency being obtained by sequentially adding the frequency of pixels from a partition having the maximum light quantity among the partitions, and the number of partitions representing a position of a partition to which the cumulative frequency belongs counted from the partition having the maximum light quantity. The signal processing unit controls luminance of the surface light source based on a partition in which the index value exceeds a threshold.
Abstract:
According to an aspect, the liquid crystal display device includes: an expansion coefficient determining unit that determines an expansion coefficient of each of partial areas based on a signal level of the first, the second, and the third colors; a luminance level determining unit that determines a luminance level of each partial area based on the signal level; a signal processing unit that uses the expansion coefficient to expand the signal level; and a light source control unit that controls brightness of a light source based on the expansion coefficient and the luminance level. The light source can change the brightness of the partial areas individually. The light source control unit controls the light source such that the brightness of the light source in a partial area having a luminance level equal to or higher than a predetermined threshold is higher than the brightness based on the expansion coefficient.
Abstract:
A display device includes an image display panel section which displays an image on the basis of an image signal, a light source section which emits light to the image display panel section by dimming control according to a control signal based on the image signal, and a control section which determines on the basis of the image signal from a mode of change in light emission luminance of the light source section whether the image displayed by the image display panel section is a dynamic image or a static image and which performs switching according to a determination result between a static image control speed and a dynamic image control speed of the dimming control. The display device suppresses image quality degradation caused at the time of displaying a dynamic image or a static image.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
A display device includes a signal processing unit that receives input signals, and calculates output signals to a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The signal processing unit calculates a frequency of pixels belonging to each of a plurality of partitions using a light quantity of a surface light source. The signal processing unit calculates an index value for each of the partitions by at least multiplying the cumulative frequency being obtained by sequentially adding the frequency of pixels from a partition having the maximum light quantity among the partitions, and the number of partitions representing a position of a partition to which the cumulative frequency belongs counted from the partition having the maximum light quantity. The signal processing unit controls luminance of the surface light source based on a partition in which the index value exceeds a threshold.
Abstract:
Provided are a display apparatus and an illumination apparatus including: a light source; a time division control unit that performs a time division operation on a value represented by a first luminance control signal of a first bit number for controlling luminance of the light source to generate second luminance control signals each having a second bit number that is smaller than the first bit number and generates third luminance control signals each having a pulse width that corresponds to one of the values represented by the second luminance control signals; and a drive unit that generates drive signals for causing the light source to emit light on the basis of the third luminance control signals and supplies the drive signals to the light source.
Abstract:
According to an aspect, a display apparatus includes: a substrate; a plurality of pixel electrodes; a plurality of detection electrodes arranged in a matrix in a display area of the substrate; a plurality of detection electrode lines coupled to the respective detection electrodes; a plurality of first electrodes provided in the same layer as the detection electrodes or the detection electrode lines and extending in a first direction; a plurality of switching elements coupled to the respective pixel electrodes; a plurality of signal lines coupled to the switching elements and extending in a second direction crossing the first direction; a coupling member provided in a peripheral area outside the display area and configured to couple ends of the first electrodes to each other; and a drive circuit configured to output a first drive signal in a first sensing period in which an electromagnetic induction method is used.
Abstract:
A detection device comprising: a plurality of first electrodes; a plurality of second electrodes facing or being close to the first electrodes; a first drive circuit configured to supply a first drive signal to the first electrodes; a second drive circuit configured to supply a second drive signal to the second electrodes, the second drive signal having a same waveform as that of the first drive signal and in synchronization with the first drive signal; and a detector configured to detect a first detection signal, a second detection signal, and a third detection signal.