Abstract:
There is described a method of creating a transparent window (W*) in a security, especially paper, substrate (1) for security printing applications, the method comprising the steps of (i) providing a security substrate (1), (ii) forming an opening (10*) into and through the security substrate (1), and (iii) filling the opening (10*) with transparent material (2) thereby forming the transparent window (W*). The filling of the opening (10*) with the transparent material (2) is carried out in a state where the opening (10*) is open on both sides of the security substrate (1) and extends through the security substrate (1), the filling of the opening (10*) including the application of a first side (I) of the security substrate (1) against a supporting surface (21A) of a supporting member (20′, 21) in such a way as to block one side of the opening (10*), while the transparent material (2) is applied inside the opening (10*) from the other side (II) of the security substrate (1). Advantageously, the method further comprises the step of forming a field of lenses (L) on one side of the transparent window (W*), in particular by replicating the field of lenses (L) directly into the transparent material (2) filling the opening (10*). Also described is a suitable device designed to fill the opening (10*) with the transparent material (2).
Abstract:
There is described a printed security feature (10) provided onto a printable substrate, which printed security feature includes a printed area (11) with at least a first printed section consisting of a multiplicity of geometric elements (GE, 15) printed with a given distribution over the printed area. The geometric elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the printed security feature produces a first graphical representation (A1) when illuminated with visible white light. At least the first ink is an ink which responds to non-visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The printed security feature produces a second graphical representation (B1) when illuminated with non-visible light, which exhibits a distinctive two-dimensional graphic element (B) which is revealed only when the printed security feature is illuminated with non-visible light. The first printed section is subdivided into at least first and second printed portions (P1, P2), adjacent to the distinctive two-dimensional graphic element, and a third printed portion (P3), inside boundaries (200) of the distinctive two-dimensional graphic element. In the first, respectively second printed portion, the geometric elements are printed with the first, respectively second ink. In the third printed portion, the geometric elements are sub-divided into first and second contiguous portions (GE_a, GE_b) which are respectively printed with the first and second inks. The first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the printed security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the printed security feature is illuminated with non-visible light.
Abstract:
There is described a substrate (S) for security documents, such as banknotes, comprising one or more paper layers (11, 12) and a polymer layer (20) which is made to adhere to a side of at least one of the paper layers (11, 12), which polymer layer (20) is substantially transparent in at least one region of the substrate (S) which is not covered by the paper layer or layers (11, 12) so as to form a substantially transparent window (W) in the substrate (S) which is formed and closed by the polymer layer (20). The polymer layer (20) exhibits in the region of the window (W) a thickness (T) which is greater than a thickness (t) of the polymer layer (20) outside of the region of the window (W). The thickness (T) of the polymer layer (20) in the region of the window (W) is substantially equal to the added thickness of the paper layer or layers (11, 12) and of the polymer layer (20) outside of the region of the window (W) so that the substrate (S) exhibits a substantially uniform and constant thickness (T). The substrate (S) further comprises a micro-optical structure (30), in particular a lens structure, which is disposed in the region of the window (W) on at least one side of the polymer layer (20).
Abstract:
There is described an inspection system (10) for inspecting the quality of printed sheets which are transported by a sheet conveyor system comprising at least one sheet gripper system (3a, 3b) including a plurality of spaced-apart gripper bars (32) for holding the printed sheets by a leading edge thereof. The inspection system (10) comprises an optical quality control apparatus for carrying out inspection of a first side of the printed sheets while the printed sheets are being transported by the sheet gripper system (3b). The optical quality control apparatus includes a line camera (11) for scanning the first side of the printed sheets at an inspection location which is situated at a location proximate to a portion of the sheet gripper system (3b) where the gripper bars (32) transporting the printed sheets undergo a change of direction of displacement while the printed sheets are still being scanned by the line camera (11). The inspection system (10) further comprises a suction roller (50) that is placed in front of the optical path (B) of the line camera (11) along the path (A) of the printed sheets being transported by the sheet gripper system (3b), which suction roller (50) contacts a second side of the printed sheets opposite to the first side which is being scanned by the line camera (11), the suction roller (50) being driven at a selected circumferential speed to drive successive portions of the printed sheets being inspected by the quality control apparatus at a determined and controlled speed past the line camera (11).
Abstract:
Intaglio printing press systems for recto-verso intaglio printing of sheets, in particular for the production of banknotes and the like securities, wherein first and second intaglio printing presses are operatively-coupled to one another by a sheet processing and transporting system comprising an automated guided vehicle system for automatically transporting sheets from a sheet delivery station of the first intaglio printing press where recto printing is performed to a sheet feeding station of the second intaglio printing press where verso printing is performed.