Abstract:
A rotary tool holder (20) includes a shank (58) having a flange (66), a tapered outer surface (64), and front and rear contact portions (60). The tapered outer surface (64) corresponds to the tapered bore of a spindle, and flexible circular cantilevers (70, 103) are provided at one or both contact portions such that a free end (76, 105) of the cantilevers expands radially due to centrifugal force to maintain contact with the tapered bore (53). The shank (58) can be formed from an inner member (113) and a sleeve (115) disposed thereover, in which portions of the sleeve (115) form the circular cantilevers. The circular cantilevers (256) can also be formed by a cavity (260) created in the shank (253). Alternatively, instead of circular cantilevers (256), the shank of the tool holder can have a taper which is optimized for a certain speed, wherein the taper of the shank (403) has a first taper at rest and a different taper (&PHgr;2) at a desired speed.
Abstract:
An expandable holding device for holding a component (115) in which the clamping force is brought about by the solidification and expansion of a fusible alloy (132). The alloy (132) is contained in an expansion chamber (130) defined in part by a thin-walled, expansion sleeve (122). The alloy (132) has a low melting point and expands when it solidifies. The pressure caused by expansion of the fusible alloy radially expands the expansion sleeve (122) causing the expansion sleeve to grip the component (115). To release the component, the alloy (132) is heated and liquified so that the expansion sleeve (122) returns to an unexpanded condition.
Abstract:
A clamping assembly (14) for releasably holding toolholder (12) having a shank (22) includes a tool support member (32) having a bore extending along a longitudinal axis. A locking mechanism is disposed in the axial bore (44) for securing the toolholder to the support member. The locking mechanism includes a lock rod (104) having first and second contact surfaces mounted in the support member. The lock rod moves along the longitudinal axis between a locked position and a release position. A wedge rod (130) is mounted in the support member for reciprocal movement along an axis angularly disposed with respect to the longtudinal axis. The wedge rod has first and second wedge surfaces which incline in parallel fashion from opposite edges of the wedge rod. First and second force transmitting elements (126) are interposed between the wedge surface of the wedge body and the contact surfaces of the lock rod. When the lock rod is moved in first direction, the first force transmitting element is moved outward with respect to the transverse axis into contact with the first support surface and pushes the lock rod towards a locked position. When the wedge rod is moved in a second direction, the second force transmitting element is moved outward with respect to the transverse axis into engagement with the second contact surface of the lock rod and moves the lock rod towards a release position.
Abstract:
The present invention entails a method and apparatus for balancing a high speed rotary tool assembly (10). A pair of closed balancing rings (28) are journalled about a cylindrical bearing surface (18) formed around a rotary tool holder (12) with each ring being rotatively mounted about the bearing surface (18) independently of each other. The tool holder (12) is adapted to receive and hold a cutting tool (16). After determining the unbalance of the tool holder (12) and cutting tool (16), the rings (28) are rotatively adjusted about the bearing surface (18) to create an unbalance within the tool rings (28) and the position of the tool rings (28) is adjusted such that the created unbalance of the tool rings (28) is disposed opposite the determined unbalance of the rotary tool holder (12) and cutting tool (16).
Abstract:
A rotary tool holder (20) includes a shank (58) having a flange (66), a tapered outer surface (64), and front and rear contact portions (60). The tapered outer surface (64) corresponds to the tapered bore of a spindle, and flexible circular cantilevers (70, 103) are provided at one or both contact portions such that a free end (76, 105) of the cantilevers expands radially due to centrifugal force to maintain contact with the tapered bore (53). The shank (58) can be formed from an inner member (113) and a sleeve (115) disposed thereover, in which portions of the sleeve (115) form the circular cantilevers. The circular cantilevers (256) can also be formed by a cavity (260) created in the shank (253). Alternatively, instead of circular cantilevers (256), the shank of the tool holder can have a taper which is optimized for a certain speed, wherein the taper of the shank (403) has a first taper at rest and a different taper (Φ2) at a desired speed.
Abstract:
A drill steel-chuck assembly which includes a drill steel (26) which has a plurality of faces (56-66) and opposite ends. The drill steel has one portion (74) adjacent one of the opposite ends thereof and an intermediate (76) portion spaced apart from the one portion. The drill steel further has one transition portion (78) between the one portion and the intermediate portion so as to join the one portion and the intermediate portion. The one portion of the drill steel presents a first orientation of the faces. The intermediate portion of the drill steel presents a second orientation of the faces. The one transition portion (78) of the drill steel presents a twisted orientation of the faces comprising a generally constant twist of the faces from the first orientation of the one portion to the second orientation of the intermediate portion. There is a chuck (26) for attachment to the drill steel through engagement with the transition portion of the drill steel.
Abstract:
A cutting bit has a bit body (180) which has a forward end (182) and a rearward end (216). The bit body (181) contains a seat at the forward end (182) thereof. The bit body (181) contains a bore intersecting the seat wherein a bore wall defines the bore. A cutting insert (196) is received by the seat wherein the cutting insert presents a side surface (198) facing the bore. A wedge (206) has a generally longitudinal seating surface. The wedge (206) has a support surface opposite to the longitudinal seating surface. The wedge (206) is received within the bore so that the longitudinal seating surface of the wedge (206) contacts the side surface (198) of the cutting insert (196) and for at least a portion of the length of the wedge (206) the entire support surface contacts the bore wall so as to frictionally retain the cutting insert (196) in the seat.
Abstract:
A cutting insert (120, 140, 210, 610, 510) is disclosed in which at least one corner portion of the insert has a penetrating segment (100, 400, 200, 500, 600) of a given radius for penetrating a workpiece and an adjacent finishing segment (105, 405, 205, 505, 605) having a greater radius or greater radii which follows the penetrating segment to improve the surface roughness of the workpiece.
Abstract:
Un ensemble de serrage (14) pour retenir de manière amovible un porte-outil (12) ayant une tige (22) comprend un élément (32) de support de l'outil pourvu d'un alésage le long d'un axe longitudinal. Un mécanisme de verrouillage agencé dans l'alésage axial (44) assujettit le porte-outil à l'élément de support. Le mécanisme de verrouillage comprend une tige de verrouillage (104) avec des première et deuxième surfaces de contact montées dans l'organe de support. La tige de verrouillage se déplace le long de l'axe longitudinal entre une position de verrouillage et une position de libération. Une tige en coin (130) montée dans l'élément de support effectue un mouvement réciproque le long d'un axe qui forme un angle par rapport à l'axe longitudinal. La tige en coin comprend des première et deuxième surfaces obliques parallèles en coin qui partent de bords opposé de la tige en coin. Des premier et deuxième éléments (126) de transmission de force sont intercalés entre la surface en coin du corps en coin et les surfaces de contact de la tige de verrouillage. Lorsque la tige de verrouillage se déplace dans la première direction, le premier élément de transmission de force se déplace vers l'extérieur par rapport à l'axe transversal jusqu'à entrer en contact avec la première surface de support et pousse la tige de verrouillage vers une position de verrouillage. Lorsque la tige en coin se déplace dans une deuxième direction, le deuxième élément de transmission de force se déplace vers l'extérieur par rapport à l'axe transversal jusqu'à contacter la deuxième surface de contact de la tige de verrouillage et déplace la tige de verrouillage vers une position de libération.
Abstract:
L'invention a trait à un outil à douille (10) permettant de retirer une douille (12) d'un élément de rétention ou de bec (14) circonférentiel, et permettant d'insérer ladite douille ou une autre douille dans un élément de rétention ou de bec (14). Spécifiquement, l'outil comprend un manchon allongé (40) comportant une partie (42) de réception de douille formée autour d'une extrémité, ainsi qu'un plongeur monté de manière à effectuer un va-et-vient à l'intérieur de l'extrémité opposée dudit manchon. Afin de retirer une douille d'un élément de rétention (14), on insère l'extrémité libre de la douille dans la partie (44) de réception de douille, puis on pousse le manchon (40) sur la douille (12), provoquant la compression radiale de cette dernière (12) ainsi que sa libération de l'élément de rétention (14) associé. Afin d'éjecter ladite douille (12) dudit manchon, on déplace le plongeur (50) pour qu'il vienne au contact de ladite douille (12), puis on pousse cette dernière (12) à partir dudit manchon (40). Ensuite, lorsque l'outil ne comporte plus de douille (12), on peut préparer une autre douille destinée à être insérée dans un élément de rétention (14) par insertion de la partie arrière de ladite douille (12) dans ladite partie (44) de réception de douille.