Abstract:
A robust formulation of silver-organo-complex (SOC) ink and method of making same are provided. In an aspect, the complexing molecules act as reducing agents. The silver loaded ink can be printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion.
Abstract:
Disclosed are embodiments for a tracking device having multiple layers of localization and communication capabilities, and particularly having the ability to operate in zero-infrastructure or zero-power conditions. Also disclosed are methods and systems that enhance location determination in zero-infrastructure and zero-power conditions. In one example, a device, system and/or method includes an infrastructure-based localization module, an infrastructure-less localization module and a passive module that can utilize at least two of the modules to determine a location of the tracking device.
Abstract:
Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|α| = 1) with a fractional order Smith chart (|α|≠ 1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.
Abstract:
A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a reusable portion including wireless electronics. The one or more sensors can be secured to a flexible substrate and can be printed by non-contact printing on the substrate. The disposable portion can be removably coupled to the one or more sensors. The device can include one or more sensors for wireless monitoring of a wound, a wound dressing, a body fluid exuded by the wound and/or wearer health.
Abstract:
Disclosed are various embodiments for monitoring tracking devices capable of seamless indoor and outdoor tracking transitions. A tracking device may comprise, for example, printable circuitry and antennas combined with one or more receivers/transceivers on a substrate. The tracking device may be configured, for example, to localize the tracking device via GPS or an alternative localization strategy based on a determination of whether GPS communication is available. A modified RSSI fingerprinting methodology may be used to accurately determine a location of the tracking device using Wi-Fi access points. A device monitoring service may communicate with internal and/or external mapping API's to render a device monitoring user interface comprising a visual representation of the location of the tracking device.