Abstract:
The present teachings relate to a method and system for determining Regions of Interest (ROI) for one or more biological samples in a laboratory instrument. The method can include an optical system capable of imaging florescence emission from a plurality of sample wells. An initial ROI, its center location and size can be estimated from the fluorescence detected from each well. From this information the average size of the ROIs can be determined and global gridding models can be derived to better locate each of the ROIs. The global gridding models can then be applied to the ROIs to improve the precision of the ROI center locations. Sample wells not originally providing fluorescence ROIs can be recovered through the use of mapping functions. The radius of each ROI can then be adjusted to improve the signal-to-noise ratio of the optical system.
Abstract:
In one exemplary embodiment, a method for calibrating an instrument is provided. The instrument includes an optical system capable of imaging florescence emission from a plurality of reaction sites. The method includes performing a region-of-interest (ROI) calibration to determine reaction site positions in an image. The method further includes performing a pure dye calibration to determine the contribution of a fluorescent dye used in each reaction site by comparing a raw spectrum of the fluorescent dye to a pure spectrum calibration data of the fluorescent dye. The method further includes performing an instrument normalization calibration to determine a filter normalization factor. The method includes performing an RNase P validation to validate the instrument is capable of distinguishing between two different quantities of sample.