Abstract:
Some embodiments describe a computer-implemented method for calibrating a fluorescent dye. The method can comprise imaging a sample holder, loaded into an instrument, at more than one channel. The sample holder can comprise a plurality of reaction sites and more than one dye type, with each dye occupying more than one reaction site. The method can further comprise identifying a peak channel for each dye on the sample holder, normalizing each channel to the peak channel for each dye, and producing a dye matrix that can comprise a set of dye reference values.
Abstract:
In one exemplary embodiment, a method for calibrating an instrument is provided. The instrument includes an optical system capable of imaging florescence emission from a plurality of reaction sites. The method includes performing a region-of-interest (ROI) calibration to determine reaction site positions in an image. The method further includes performing a pure dye calibration to determine the contribution of a fluorescent dye used in each reaction site by comparing a raw spectrum of the fluorescent dye to a pure spectrum calibration data of the fluorescent dye. The method further includes performing an instrument normalization calibration to determine a filter normalization factor. The method includes performing an RNase P validation to validate the instrument is capable of distinguishing between two different quantities of sample.
Abstract:
An instrument for processing and/or measuring a biological process contains an excitation source, a sample holder, an optical sensor, an excitation optical system, and an emission optical system. The sample holder is configured to receive a plurality of biological samples. The optical sensor is configured to receive an emission from the biological samples. The excitation optical system is disposed along an excitation optical path and is configured to direct the electromagnetic radiation from the excitation source to the biological samples. The emission optical system is disposed along an emission optical path and is configured to direct electromagnetic emissions from the biological samples to the optical sensor. The instrument further contains a plurality of filter assemblies configured to be interchangeably located along at least one of the optical paths. The plurality of filter components includes a first filter assembly characterized by a first optical power and a first filter having a first filter function, the first filter function characterized by at least one of a first low-pass wavelength or a first high-pass wavelength. The second filter assembly is characterized by a second optical power and a second filter having a second filter function, the second filter function comprising at least one of a second low-pass wavelength that is different than the first low-pass wavelength or a second high-pass wavelength that is different than the first high-pass wavelength.