Abstract:
A user of an image forming device selects from among a plurality of pre-stored color rendition dictionaries (CRDs) in order that a set of system process parameter setpoints associated with that CRD may be referenced to bias and/or skew an available color gamut in the direction of a particular nominally out-of-gamut color which the user wishes to produce in a color image output by the image forming device. A capability is included in a color image forming device store and/or update multiple sets of special process parameter setpoints defining a plurality of CRDs each of which may be identified and associated with a specific color in order that requests to print out-of-gamut colors may be satisfied routinely as exceptions to a nominal gamut based on a nominal set of stored setpoints when a CRD is selected and the setpoints associated with that CRD are input for reference by the color image forming device on a temporary basis.
Abstract:
Systems and method provide compensation for temperature induced peak wavelength shift of LEDs is color parameter measuring systems that use a model to reconstruct target color parameter values from the reflectance values measured when the target is illuminated by LEDs. Several models may be constructed, with each model being trained at a unique temperature, resulting in a set of models that span the temperature range of interest. In real-time, the LED based color parameter measuring system measures the temperature and interpolates between the models to estimate the appropriate model to use at the temperature of interest. The estimated model is then used to perform the color parameter value estimation.
Abstract:
A method for calibrating a printing system including a plurality of printers includes designating one of the plurality of printers as a reference printer and defining color values for a desired response for one or more printed test patches on a control page. Through a first process aimed toward achieving the desired response, a printed control page is generated with the reference printer, the control page including one or more of the test patches which, when measured, has a measured response which approaches the desired response. Through a second process aimed toward achieving a desired response, the desired response being the measured response of the reference printer, a printed control page is generated with a second of the printers, the control page including one or more of the test patches which, when measured, has a response which approaches the measured response of the reference printer.
Abstract:
A tunable Fabry-Perot filter is supported on a substrate which may be transparent. A transparent support body is supported by the substrate and carries a first reflector. A second reflector is supported on the substrate. The first and second reflectors define a gap therebetween. The size of the gap is adjustable by flexing of the support body to modulate a wavelength of light output by the filter.
Abstract:
A projection system includes a display apparatus comprising a plurality of tunable Fabry-Perot filters, each of the filters being configured for shifting between a state in which the filter transmits radiation in a bandwidth in the visible range of the electromagnetic spectrum and a state in which the filter transmits radiation in a bandwidth outside the visible range of the electromagnetic spectrum. An illuminator provides light to the plurality of Fabry-Perot filters. A control system receives image data and controls the display apparatus to project an image onto an associated display surface. The control system includes a modulator which provides wavelength modulation signals to the plurality of Fabry-Perot filters to modulate a color of pixels in the image and causes selected ones of the Fabry-Perot filters to shift into the bandwidth outside the visible range to modulate the brightness of pixels in the image.
Abstract:
A method and system for selecting an optimal set of S number of calibration patches for an image producing system. The method of selecting the S number of calibration patches includes acquiring a set of K number of basis eigen vectors and model parameters which represent the image producing system having G number of colors and computing the optimal set of S number of colors selected from the set of G number of colors. Each one of the computed set of S number of colors is used for one of the S number of calibration patches.
Abstract:
The method and system for printer color calibration use a combination of a full-width array (FWA) or similar page-scanning mechanism in conjunction with an spectrophotometer color measurement system in the output path of a color printer for measuring colors (e.g., on printed test sheets, banner/separation pages, etc.) with or without requiring any manual operations or operator involvement. The automatic color balance control system produces spatial tonal reproduction values for all four of the primary colors by printing patches, measuring colors using the sensor combination and automatically readjusting the spatial tone reproduction curves until a satisfactory level of printed color accuracy and uniformity are obtained. While producing color balanced TRCs, the system will automatically lock the printer output to some predetermined color patch targets. In one particular preferred embodiment, this output is locked to neutral gray when target colors are set to neutral gray inside the digital front end (DFE). After converging to the targets, the control system returns full TRCs for use inside the normal print path.
Abstract:
Small, fast, and inexpensive in-line spectrophotometers can produce in-line spectrums of a substrate before or after printing on the substrate. In-line spectrums are generally far less complete than a reference spectrum produced with a large, slow, and expensive reference spectrophotometer. An in-line spectrum can be mapped to a reference spectrum using a variety of known algorithms. However, the mapping is erroneous when the media substrate type changes. Reference transform matrices and in-line transform matrices can correct the erroneous mapping.
Abstract:
Apparatus and methods are provided for implementing a full width array material scanning spectrophotometer by integrating a Fabry-Perot cavity filter with a silicon photodetector and a light focusing device (an optical guide or a SELFOC® lens). The material to be scanned is illuminated by a broad band illumination source (white LEDs or a fluorescence light source). The Fabry-Perot cavity gap can be tuned electromechanically to get multiple measurements to resolve the spectral distribution of the transmitted light signal. The array spectrophotometric architecture facilitates an elongated, substantially linear band detection and the associated spectral reconstruction technique resolves spectral distribution in the presence of multiple resonant peaks.
Abstract:
An LED spectrophtometer device for determining an aspect of the color of an object may include: a visible spectrophotometer comprising a plurality of light emitting diodes that emit light in the visible spectrum onto the object; at least one detector for detecting said light after being directed onto the object and for generating an output; and a UV light emitting diode assembly that emits light in the near ultraviolet spectrum and communicates with at least one detector for generating an output. The device may further include a processor that combines the outputs of the at least one detector of the visible spectrophotometer and the at least one detector in communication with the UV light emitting diode assembly.