Abstract:
A display panel and a method of forming a display panel are described. The display panel may include a thin film transistor substrate including a pixel area and a non-pixel area. The pixel area includes an array of bank openings and an array of bottom electrodes within the array of bank openings. A ground line is located in the non-pixel area and an array of ground tie lines run between the bank openings in the pixel area and are electrically connected to the ground line in the non-pixel area.
Abstract:
Reflective bank structures for light emitting devices are described. The reflective bank structure may include a substrate, an insulating layer on the substrate, and an array of bank openings in the insulating layer with each bank opening including a bottom surface and sidewalls. A reflective layer spans sidewalls of each of the bank openings in the insulating layer.
Abstract:
A content-based adaptive refresh technique is implemented in an active matrix display system for reducing power consumption. The active matrix display system includes a display panel having multiple rows of display elements arranged as a display matrix. The display panel is coupled to a scan driver and a data driver. The scan driver selects one row at a time to receive data signals, and the data driver provides the data signals. The active matrix display system also includes a timing controller operable to signal the scan driver to cause a first row of the display panel to be not refreshed in a current data frame and a second row of the display panel to be refreshed in the current data frame.
Abstract:
A compliant bipolar micro device transfer head array and method of forming a compliant bipolar micro device transfer array from an SOI substrate are described. In an embodiment, a compliant bipolar micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include first and second silicon interconnects, and first and second arrays of silicon electrodes electrically connected with the first and second silicon interconnects and deflectable into one or more cavities between the base substrate and the silicon electrodes.
Abstract:
A method of fabricating and transferring a micro device and an array of micro devices to a receiving substrate are described. In an embodiment, an electrically insulating layer is utilized as an etch stop layer during etching of a p-n diode layer to form a plurality of micro p-n diodes. In an embodiment, an electrically conductive intermediate bonding layer is utilized during the formation and transfer of the micro devices to the receiving substrate.
Abstract:
Systems and methods for transferring a micro device or an array of micro devices to or from a substrate are disclosed. In an embodiment, a remote center robot allows on-the-fly alignment between a micro pick up array and a target substrate. The remote center robot may include a plurality of symmetric linkages that move independently and share a remote rotational center. In an embodiment, the remote rotational center may be positioned at a surface of the micro pick up array to prevent damage to the array of micro devices during transfer.
Abstract:
A nanowire device (250) and a method of forming a nanowire device that is poised for pick up and transfer to a receiving substrate are described. In an embodiment, the nanowire device (250) includes a base layer (208) and a plurality of nanowires on and protruding away from a first surface of the base layer. An encapsulation material (234) laterally surrounds the plurality of nanowires in the nanowire device, such that the nanowires are embedded within the encapsulation material.
Abstract:
Methods and structures for forming arrays of LED devices are disclosed. The LED devices in accordance with embodiments of the invention may include an internally confined current injection area to reduce non-radiative recombination due to edge effects. Several manners for confining current may include etch removal of a current distribution layer, etch removal of a current distribution layer and active layer followed by mesa re-growth, isolation by ion implant or diffusion, quantum well intermixing, and oxide isolation.
Abstract:
A method and structure for stabilizing an array of micro devices is disclosed. A stabilization layer includes an array of stabilization cavities and array of stabilization posts. Each stabilization cavity includes sidewalls surrounding a stabilization post. The array of micro devices is on the array of stabilization posts. Each micro device in the array of micro devices includes a bottom surface that is wider than a corresponding stabilization post directly underneath the bottom surface.
Abstract:
A light emitting assembly is described. In one embodiment, one or more light emitting diode (LED) devices and one or more microcontrollers are bonded to a same side of a substrate, with the one or more microcontrollers to switch and drive the one or more LED devices.