Abstract:
A method for rate selection by a communication device for enhanced uplink during soft handoff in a wireless communication system includes a first step of receiving information from a scheduler. This information can include one or more of scheduling, a rate limit, a power margin limit, and a persistence. A next step includes determining a data rate for an enhanced uplink during soft handoff using the information. A next step includes transmitting to a serving base station on an enhanced uplink channel at the data rate determined from the determining step.
Abstract:
Communication rate in a variable rate communication system is determined by calculating metrics based upon symbol energy over a traffic channel frame (200) and selecting an optimum rate based upon the calculated metrics. The metrics are calculated by selectively accumulating symbol energy, using adders (405-408) and accumulators (409-412) in response to the presence of power control groups (201) within the traffic channel frame (200), as determined by power control group selector (400).
Abstract:
The present invention provides a downconverter method and apparatus for downconverting a multiphase modulated signal. The downconverter can be implemented in a multi-phase receiver such as a quadrature receiver. An analog-to-digital converter (103) converts an intermediate frequency signal to a digital signal at a sampling rate. A Hilbert transformation filter (104) and a delay element (105) connected in parallel provide respective passband quadrature and in-phase components of the digital signal. A digital translator (107) alters the passband quadrature and in-phase components based on a predetermined pattern to provide a baseband quadrature signal and a baseband in-phase signal. The digital translator (107) can be a pseudorandom sequence demodulator for demodulating a code division multiple access (CDMA) signal. Various types of DC estimation can also be provided in addition to automatic gain control.
Abstract:
A base station communicates a positioning reference signal (PRS) to wireless communication devices over a downlink in a wireless communication system by encoding a PRS into a first set of transmission resources, encoding other information into a second set of transmission resources, multiplexing the two sets of resources into a subframe such that the first set of resources is multiplexed into at least a portion of a first set of orthogonal frequency division multiplexed (OFDM) symbols based on an identifier associated with the base station and the second set of resources is multiplexed into a second set of OFDM symbols. Upon receiving the subframe, a wireless communication device determines which set of transmission resources contains the PRS based on the identifier associated with the base station that transmitted the subframe and processes the set of resources containing the PRS to estimate timing (e.g., time of arrival) information.
Abstract:
A method in a relay node operating in a time division duplex system wherein the relay node transmits downlink pilot timeslot information to a user terminal in a first temporal region of a special sub-frame, communicates with a base station during a second temporal region of the special sub-frame, the second temporal region is configured as a guard period for communications between the relay node and the user terminal, and configures a third temporal region of the special sub-frame.
Abstract:
A wireless communication infrastructure entity including a transceiver coupled to a controller configured to generate parity bits based on scheduling grant information and to encode the parity bits based on additional scheduling grant information not used to generate the parity bits, wherein the encoded parity bits combined with the scheduling grant information. The additional scheduling grant information may be transport block size or redundancy version information.
Abstract:
A wireless communication infrastructure entity in a wireless communication system implementing an uplink control channel using a narrowband frequency resource within a wideband frequency resource. The entity includes a controller communicably coupled to a transceiver wherein the controller is configured to cause the transceiver to signal a change of location for an uplink control channel within the wideband frequency resource. The uplink control channel includes at least a pair of uplink control channels separated within the wideband frequency resource and accommodates simultaneous uplink transmissions by multiple user equipments communicating in the wireless communication system.
Abstract:
A method in a wireless communication terminal (103) including receiving a plurality of sub-frames having time-frequency resource elements and resource allocation fields associated with a corresponding sub-frame, wherein the resource allocation fields indicate a resource assignment. In another embodiment, terminal receives a radio frame comprising a plurality of sub-frames and a frequency diverse allocation field indicating frequency diverse resource allocations in multiple sub-frames of the radio frame.
Abstract:
A method for sleep mode during an impending handover is disclosed. The method comprises receiving (104) from a network a handover threshold value. Then once in sleep mode, monitoring (128) a channel condition of a handover candidate cell and determining that the handover threshold value of the handover candidate cell has been exceeded. After receiving a pending data indicator, remaining awake (134) to receive a data set associated with the pending data indicator. The network re-schedules (218) transmission of the data set to the mobile station.
Abstract:
During operation radio frames are divided into a plurality of subframes. Data is transmitted over the radio frames within a plurality of subframes, and having a frame duration selected from two or more possible frame durations.