Abstract:
A base station (103) operates a hybrid retransmission scheme for a communication to a first subscriber unit (101) over a communication channel of an air interface of a cellular communication system. The base station (103) comprises a retransmission parameter controller (209) which sets a transmission parameter, such as a transmit power or an error correcting scheme, for a transmission of the communication in response to an operating point for the retransmission scheme. A CQI processor (203) determines a channel quality indication for the communication channel and a variation processor (205) determines a variation measure of a variation of the channel quality indication. The variation measure can for example be a rate of change. An operating point controller (207) sets the operating point in response to the variation measure. The invention may allow improved setting of transmission parameters for initial transmissions thereby providing higher throughput, reduced resource consumption and reduced delay.
Abstract:
A base station (103) operates a hybrid retransmission scheme for a communication to a first subscriber unit (101) over a communication channel of an air interface of a cellular communication system. The base station (103) comprises a retransmission parameter controller (209) which sets a transmission parameter, such as a transmit power or an error correcting scheme, for a transmission of the communication in response to an operating point for the retransmission scheme. A CQI processor (203) determines a channel quality indication for the communication channel and a variation processor (205) determines a variation measure of a variation of the channel quality indication. The variation measure can for example be a rate of change. An operating point controller (207) sets the operating point in response to the variation measure. The invention may allow improved setting of transmission parameters for initial transmissions thereby providing higher throughput, reduced resource consumption and reduced delay.
Abstract:
A method of transmitting scheduling information by a wireless communication device (200) to a network (112) for allocation of resources to the wireless communication device, comprises the steps of transmitting (500) to the network first scheduling information (SI1) relating to a first resource requirement and re-transmitting (516) the first scheduling information when the first scheduling information is not received by the network. Second scheduling information (SI2) relating to a second resource requirement subsequent to the first resource requirement is transmitted (512) to the network (112) in response to one of the first scheduling information having been received by the network and the first scheduling information having not been received by the network after a predetermined number of re-transmissions of the first scheduling information. The generation of scheduling information may be initiated in response to a trigger event such as a periodic trigger event or a non-periodic trigger event.
Abstract:
A method to provide a nominal best effort data rate based on a Quality of Service (QoS) requirement of a user data connection, the method comprising assigning (105) a service priority based on the QoS requirement, and assigning (110) the nominal best effort data rate for the service priority using a predetermined function. Further, it comprises of a method to determine a scheduling priority value for a user data connection by providing a relative fairness. Furthermore, the method comprises a method to satisfy a delay requirement for a delay sensitive data connection through a scheduling.
Abstract:
A transmitter comprises functionality (101, 103) for generating a block of input modulation symbols for example from received data bits. An M-point discrete Fourier transform (105) is applied to the block of input modulation symbols resulting in a frequency domain symbol block. This block is fed to an N-point inverse discrete Fourier transform (105) (N>M) thereby generating a time domain transmit signal. In addition, the transmitter (200) comprises an inter-symbol processor (201) which determines inter-symbol values corresponding to inter-symbol times of the time domain transmit signal and an attenuation processor (203) which attenuates at least one of the input modulation symbols in response to the inter-symbol values. By attenuating selected input modulation symbol(s) a significantly reduced amplitude variation and specifically peak-to-average amplitude variation can be achieved.
Abstract:
A transmitter comprises functionality (101) for receiving a sequence of input modulation symbols. An M-point discrete Fourier transform (105) is applied to the block of input modulation symbols resulting in a frequency domain symbol block. This block is fed to an N-point inverse discrete Fourier transform (105) (N>M) thereby generating a time domain transmit signal. In addition, the transmitter (200) comprises a phase rotation processor (201) which phase rotates the input modulation symbols in multi-symbol intervals. The phase rotations applied within each interval are constrained in accordance with a first phase rotation constraint requirement whereas the phase rotations between consecutive symbols belonging to different intervals are constrained in accordance with a different phase rotation constraint requirement. The invention may allow interference mitigation by reducing alignment between quadrature channels of the transmitter and interferers.
Abstract:
Various embodiments are described to address the need for an apparatus and method of outer-loop power control for enhanced uplink communications that address some of the outstanding problems in the prior art. Generally expressed, a base site (131), while a first uplink channel is inactive, monitors packet retransmissions to generate an uplink quality indicator. Here, packet retransmissions refers to the number of packet retransmissions used by a remote unit (101) to send packets to a base transceiver station (111) via at least one other uplink channel. Also, while the first uplink channel is inactive, the base site adjusts a signal-to-interference ratio (SIR) target for the first uplink channel based on the uplink quality indicator. Then, when the first uplink channel becomes active, the base site begins power controlling the first uplink channel using the SIR target.
Abstract:
During a random access communication opportunity (12), user equipment (20) utilizes either or both of an adaptive modulation and coding-based communication protocol (26) and an HARQ-based communication protocol (27) to achieve improved performance. This can avoid the need to establish dedicated channels (13) to support the required communications. In one embodiment, a plurality of adaptive modulation and coding-based communication protocols are provided with a given protocol being selected as a function of one or more governing criteria. For example, the protocol can be selected as a function of a quality condition of the communication path, as a function of a memory buffer, and so forth.