Abstract:
A gas pressure regulator (100) includes a mechanical primary stage (102), preferably including a spring valve, and an electronic secondary stage (104), preferably including a micromachined pressure regulator, the combination of the mechanical primary stage and the electronic secondary stage suitable for relatively precise low pressure near zero flow rates with reasonable energy consumption rates, such as encountered when supplying fuel to a low power fuel cell system.
Abstract:
A self-contained hydrogen recharging system (5) for a fuel cell metal hydride storage canister (100). A water reservoir (10) provides water (15) to an electrolyzer (20), where the water is converted into hydrogen gas (22) and oxygen gas (24). The hydrogen gas is dried (26) and then stored in an accumulator (30). When the metal hydride storage canister is ready to be refilled, it is connected by the user to the recharging system. A heat exchanger (55) heats the fuel cell hydride storage canister prior to transfer of the stored hydrogen gas, and then cools the fuel cell hydride storage canister during transfer of the stored hydrogen gas. The hydrogen gas stored in the accumulator is rapidly transferred to the hydride storage canister by means of a pump (60) and stowed in the canister as a metal hydride.
Abstract:
A communication system and a method of communicating backhaul data. The communication system can include a controller. The controller can dynamically select from a plurality of backhaul sites at least a first backhaul site to establish a backhaul communication link with an access point. The controller also can generate a control signal that indicates to the access point to beam steer a backhaul signal to the first backhaul site. The access point can include a phased array that dynamically beam steers the backhaul signal in azimuth and elevation.
Abstract:
A communication system (10) for information security and recovery includes at least one communication device (60) having a memory (145) for storing a plurality of device information (117); a backup server (110); and a system controller (40) coupled between the backup server (110) and the at least one communication device (60). The system controller (40) is programmed to receive a request to secure the communication device (60); transfer the plurality of device information (117) from the communication device (60) to the backup server (110); and disable the operation of the communication device (60).
Abstract:
A method (60) of pre-caching user interaction elements, includes monitoring motion patterns (40) with an electronic input device having a gesture recorder and a writing surface using a three-dimensional position of the recorder with respect to the writing surface, analyzing the monitored motion patterns (42) made while the recorder is off the writing surface to determine if the recorder is approaching a target area at the writing surface (44), the target area having an associated functionality, and triggering the functionality (50)before contact between the recorder and the target area. The steps are repeated continuously. The analyzing step (42) determines if the recorder is moving towards the writing surface, and, if so, a two-dimensional location of the recorder with respect to the plane of the writing surface is determined (46) and a trajectory is defined based upon the location and movement of the recorder off the writing surface. A control area disposed at an endpoint of the trajectory is identified (48) as the target area to be triggered. Alternatively, a plurality of trajectories between the recorder and a control area is defined based upon recorder location and movement off the writing surface and correlated with the actual trajectory. For the trajectory with the highest degree of correlation, a corresponding control area is defined as the target area to be triggered. Triggering of multiple control areas can be simultaneous or sequential. The method can be used with a variety of systems including an inductive stylus and tablet system and a radio frequency stylus and tablet system.
Abstract:
The fuel cells (110) consists of one or more fuel cells (110), each having a major surface (140), and disposed next to each other in a side-by-side adjacent arrangement and a fuel storage container (120) having an exterior wall (150). The fuel cells (110) are positioned such that distance between the major surfaces (140) and the fuel storage container wall (150) along a direction normal to the major surfaces is substantially the same. In addition, one or more of the fuel cells are in thermal contact with the fuel storage container such that cell waste heat is transferred to the fuel storage container. During typical operation, a change in an operational parameter of the fuel cell system such as power output causes a change in the amount of waste heat generated in the fuel cell and the waste heat is transferred to the fuel storage container.
Abstract:
A device housing (20) for a portable electronic device (10) includes an outer visible surface (30). At least one portion (35) of the outer visible surface (30) is composed of one or more optical fibers (40). The one or more optical fibers (40) are illuminated using a light source coupled to at least one end of the one or more optical fibers (40) to provide decorative characteristics and operational functions.
Abstract:
A fuel cell power source (100) for use in electronic systems includes a fuel cell system (130) and a control means (150). The control means (150) computes net power requirements of a load device from one or more power functional information sources; and determines an operating point of the fuel cell system (130) by matching the net power requirements with the power characteristics of the fuel cell system (130).
Abstract:
An apparatus and method for measuring the quantity of hydrogen in a hydrogen storage vessel (300) of a hydrogen fuel cell using the Pressure, Composition, Temperature (PCT) relationship (350) of the storage media is disclosed. The method of measuring the quantity of hydrogen (360) involves, measuring the temperature (310) of the hydrogen storage media at one or more points on the hydrogen storage vessel (300), measuring the mechanical strain (320) at one or more points on walls of the hydrogen storage vessel, computing the pressure (330) inside the vessel based on the strain measurements, referring to a look-up table (340) with PCT graph/operating curve data (350) or an equation using Van't Hoff parameters for representing the discharge PCT curve for the particular concentration at the measured pressure. The changes in temperature and pressure during hydrogen absorption-desorption which are characteristic of hydride composition is used to measure the concentration ratio of hydrogen to metal hydride as a concentration ratio of hydrogen to metal.
Abstract:
An apparatus and method for temperature regulation of a fuel cell using differential heat capacity of the fuel storage media is disclosed. The method of regulating the temperature involves measuring the temperature of one or more fuel cells, comparing the temperature against target values, selecting a control method from a set of available control methods based on the result of comparison and using that control method to initiate and control a regulation cycle, and actuating a flow control means using the selected control method to alter the flow of fuel between one or more fuel storage containers, each containing fuel storage media which exhibit different enthalpies of formation and dissociation. The regulation process starts with measuring temperature (110) of a fuel cell system (100). The measured temperature is then compared (120) to a predetermined set of ideal target values designed to provide peak fuel cell performance. Following the comparison step, a control method (130) is selected from a list of available control methods. The control method has the necessary parameters and logic to define an fuel flow initiation process (140) which in turn actuates a flow control means (150). Actuation of the flow control means changes the temperature of the one or more fuel cells and alters its operating parameters (160).