Abstract:
A gap measurement device includes a first roller and a second roller. The first roller and the second roller define a gap which varies due to thermal expansion and contraction of the rollers. A first optical probe measures a first distance to the first roller and generates a first-distance signal indicative of the first distance. A second optical probe measures a second distance to the second roller and generates a second-distance signal indicative of the second distance. An electronics module generates a gap-width signal indicative of the gap based on the first-distance signal and the second-distance signal. The invention can also measure roller velocity, roller runout, roller registration, and the thickness of liquid on a roller.
Abstract:
A piezoelectric flexure device, mounted on a photographic camera, is used to indicate the "state of readiness" of the camera's electronic flash unit. The flexure device is operatively connected with the flash unit's storage capacitor so that the flexure device is subjected to an electric field proportional to the level of charge on the storage capacitor. Since the shape of a flexure device depends upon the electric field across it, its appearance provides a visual indication to the camera user of the level of charge on the flash capacitor and, hence, the "readiness" of the energizing circuit. Preferably, the flexure device is made of a piezoelectric plastic film, such as PVF.sub.2, which exhibits substantial deformation in the presence of an electric field which can be readily produced by the DC power supply in conventional flash units.
Abstract:
A liquid dispenser array structure includes a liquid dispensing channel. A first liquid supply provides a carrier liquid that flows continuously through an outlet of the liquid dispensing channel during a drop dispensing operation. A plurality of liquid dispensers, located on a common substrate, includes a liquid supply channel and a second liquid supply that provides a functional liquid, immiscible in the carrier liquid, to the liquid dispensing channel through the liquid supply channel. A drop formation device, associated with an interface of the liquid supply channel and the liquid dispensing channel, is selectively actuated to form a discrete drop of the functional liquid in the carrier liquid flowing through the liquid dispensing channel.
Abstract:
Liquid dispensing includes providing a downwardly inclined slide surface and a carrier liquid dispensing channel that includes an outlet opening on the slide surface. A carrier liquid source is pressurized causing carrier liquid to flow continuously through the outlet opening of the carrier liquid dispensing channel and down the slide surface. A liquid dispenser array structure is provided and includes functional liquid dispensers located on a substrate that is common to the functional liquid dispensers. The functional liquid dispensers include a functional liquid supply channel, a functional liquid source that provides functional liquid, and a drop formation device associated with an interface of the functional liquid supply channel and the slide surface. The drop formation device is selectively actuated to form discrete functional liquid drops in the carrier liquid flowing down the slide surface. The functional liquid is immiscible in the carrier liquid.
Abstract:
A method of dispensing liquid includes providing a carrier liquid under pressure using a first liquid supply that flows from the first liquid supply through a first liquid supply channel through a liquid dispensing channel through a liquid return channel and back to the first liquid supply continuously during a drop dispensing operation. A functional liquid is provided to the liquid dispensing channel through a second liquid supply channel using a second liquid supply. A drop formation device is selectively actuated to form a discrete drop of the functional liquid in the carrier liquid flowing through the liquid dispensing channel. The functional liquid is immiscible in the carrier liquid. The drop ejection device is selectively actuated to divert the discrete drop of the functional liquid and a portion of the carrier liquid flowing through the liquid dispensing channel toward an outlet opening of the liquid dispensing channel.
Abstract:
A system and method of printing includes providing print and non-print drop formation waveforms to a drop formation device of a drop ejector in response to input print data to form print and non-print drops, respectively, from a liquid jet. First and second charging waveforms are provided to a charging electrode of a drop charging device when a relative motion of a receiver and the drop ejector is provided or measured at first and second speeds, respectively. The first and second charging waveforms are independent of input print data and include first and second voltage states. The drop formation device and the drop charging device are synchronized to produce print and non-print drop charge states on print and non-print drops, respectively. A deflection device causes print and non-print drops to travel along print and non-print drop paths, respectively, with the non-print drops being collected by a catcher.
Abstract:
A method of dispensing liquid drops includes providing a liquid dispenser array structure. Liquid dispensers, located on a common substrate, include a liquid supply channel and a drop formation device associated with an interface of a liquid dispensing channel and the liquid supply channel. A carrier liquid is provided by a first liquid supply that flows continuously through an outlet of the liquid dispensing channel during a drop dispensing operation. A functional liquid, immiscible in the carrier liquid, is provided by a second liquid supply to the liquid dispensing channel through the liquid supply channel. The drop formation device is selectively actuated to form a discrete drop of the functional liquid in the carrier liquid flowing through the liquid dispensing channel. The flowing carrier liquid causes the discrete drops of the functional liquid to move through the outlet of the liquid dispensing channel during the drop dispensing operation.
Abstract:
A liquid dispenser includes a first liquid supply that provides a carrier liquid under pressure that flows from the first liquid supply through a first liquid supply channel through a liquid dispensing channel through a liquid return channel and back to the first liquid supply continuously during a drop dispensing operation. A second liquid supply provides a functional liquid to the liquid dispensing channel through a second liquid supply channel. A drop formation device, associated with an interface of the second liquid supply channel and the liquid dispensing channel, is selectively actuated to form a discrete drop of the functional liquid in the carrier liquid flowing through the liquid dispensing channel. The functional liquid is immiscible in the carrier liquid. A drop ejection device is selectively actuated to divert the discrete drop of the functional liquid and a portion of the carrier liquid flowing through the liquid dispensing channel toward the outlet opening of the liquid dispensing channel.
Abstract:
A method of dispensing liquid includes providing a carrier liquid under pressure using a first liquid supply that flows from the first liquid supply through a first liquid supply channel through a liquid dispensing channel through a liquid return channel and back to the first liquid supply continuously during a drop dispensing operation. A functional liquid is provided to the liquid dispensing channel through a second liquid supply channel using a second liquid supply. A drop formation device is selectively actuated to form a discrete drop of the functional liquid in the carrier liquid flowing through the liquid dispensing channel. The functional liquid is immiscible in the carrier liquid. The drop ejection device is selectively actuated to divert the discrete drop of the functional liquid and a portion of the carrier liquid flowing through the liquid dispensing channel toward an outlet opening of the liquid dispensing channel.
Abstract:
A group timing delay device is provided to shift the timing of drop formation waveforms supplied to drop formation devices of nozzles of one of first and second groups so that print drops formed from nozzles of the first and second groups are not aligned relative to each other along a nozzle array direction. A charging device includes a common charge electrode associated with liquid jets formed from the nozzles of the first and second group and a source of varying electrical potential between the charge electrode and liquid jets. The source of varying electrical potential provides a charging waveform that is independent of print and non-print drop patterns. The charging device is synchronized with the drop formation device and the group timing delay device to produce a print drop charge state on print drops and a non-print drop charge state on non-print drops.