Abstract:
The invention relates to an imaging method, especially a computerized tomography method, with which an object is penetrated by rays from different directions and measured values, which depend upon the intensity of the rays after penetrating the object, are acquired by a detector unit. From these measured values, an object image is reconstructed by means of back projection of measured-value-dependent back projection values. Therein, the object image is divided into overlapping, quasi-spherically symmetric image segments, each being defined by an image value and a quasi-spherically symmetric base function. Furthermore, during the back projection, the back projection values are added in proportions to the image values, wherein the proportion of a back projection value, which is added during the back projection to an image value, is dependent on a proportionality factor, which is equal to the average value of the line integrals of the base function belonging to the respective image value along those rays that have generated the measured value, on which the respective back projection value is dependent.
Abstract:
The invention relates to a detection apparatus for detecting radiation. The detection apparatus comprises a GOS material (20) for generating scintillation light depending on the detected radiation (25), an optical filter (24) for reducing the intensity of a part of the scintillation light having a wavelength being larger than 650 nm, and a detection unit (21) for detecting the filtered scintillation light. Because of the filtering procedure relatively slow components, i.e. components corresponding to a relatively large decay time, of the scintillation light weakly constribute to the detection process or are not detected at all by the detection unit, thereby increasing the temporal resolution of the detection apparatus. The resulting fast detection apparatus can be suitable for kVp-switching computed tomography systems.
Abstract:
Detection apparatus for detecting radiation The invention relates to a detection apparatus for detecting radiation. The detection apparatus comprises at least two scintillators (14, 15) having different temporal behaviors, each generating scintillation light upon reception of radiation, wherein the generated scintillation light is commonly detected by a scintillation light detection unit (16), thereby generating a common light detection signal. A detection values determining unit determines first detection values by applying a first determination process and second detection values by applying a second determination process, which is different to the first determination process, on the detection signal. The first determination process includes frequency filtering the detection signal. Since the scintillation light of the different scintilla- tors is collectively detected by the same scintillation light detection unit, detection arrangements with, for example, side-looking photodiodes for separately detecting the different scintillation light of the different scintillators are not necessarily required, thereby reducing the technical complexity of the detection apparatus.
Abstract:
The invention relates to a detector (100), particularly for X-ray photons, that comprises a converter unit (10) in which incident photons (X) are converted into electrical conduction charges (11) and electrodes (21, 22) that generate an electrical field and at which said charges (11) are collected. Furthermore, it comprises a magnetic field generator (30) for generating a magnetic field (B) inside the converter unit (10) that affects the movement of the electrical conduction charges (11), particularly by restricting possible drifts of the charges in directions perpendicular to the electrical field (E).
Abstract:
The present invention relates to a medical X-rayexamination apparatus and method for performing k-edge imaging of an object of interest including material showing k- edge absorption. To allow the use of conventional detector technology, which does not suffer from the limitation to provide very high k-rate capabilities a method is proposed comprising the steps of: -emitting polychromatic X-ray radiation (4; 4a, 4b), -Bragg filtering said polychromatic X-rayradiation by a Bragg filter such that radiation (16) transmitted through said Bragg filter (14; 14a, 14b) passes through said object (5), -detecting X-rayradiation after passing through said object (5), -acquiring projection data at at least two different Bragg reflection angles of said Bragg filter (14; 14a, 14b), and -reconstructing a k-edge image from the acquired projection data.
Abstract:
The invention relates to an imaging system for imaging a region of interest from energy-dependent projection data, wherein the imaging system comprises a projection data providing unit (1, 2, 3, 6, 7, 8) for providing energy-dependent first projection data of the region of interest. The imaging system comprises further an attenuation component image generation unit (12) for generating attenuation component images of the region of interest by generating energy-dependent second projection data using a model in which the projection data depend on attenuation component images. The component image generation unit (12) is adapted for generating the attenuation component images such that deviations of the second projection data from the first projection data are reduced.
Abstract:
The present invention relates to an imaging system for imaging an object (20) comprising a polychromatic radiation source (2) and an energy resolving radiation detector (6). The imaging system comprises further a driving device for moving the object (20) and the radiation source (2) relatively to each other, in order to acquire truncated projections from different directions. A calculation unit determines a k-edge component at least of one of the object (20) and a substance within the object (20) from the truncated projections and determines non-truncated projections from the determined k-edge component. A reconstruction unit constructs the object using the non-truncated projections.
Abstract:
In the CT imaging of non-homogeneously moving objects such as the heart or the coronary vessel tree, there is a problem that different parts of the objects are at rest at different points in time. Thus, a gated reconstruction with a globally selected time point does not yield a sharp image of such objects. According to the present invention, a motion of the object is estimated, describing the motion of selected regions of these objects. Then, on the basis of the estimated motion, time points are determined, where these areas have minimal motion. Then, an image is reconstructed, wherein the data from which the respective regions are reconstructed, correspond to the respective time points, where the regions have minimal motion. Due to this, an improved image qualify maybe provided.
Abstract:
An imaging system (100) includes a radiation source (108) that emits radiation that traverses an examination region,a paralyzable photon counting detector pixel (110) that detects photons traversing the examination region and arriving at an input photon rate and that generates a signal indicative thereof, high flux electronics (122) that produce a total time over threshold value each integration period based on the signal, a reconstruction parameter identifier (124) that estimates the input photon rate based on the total time over threshold value and identifies a reconstruction parameter based on the estimate, and a reconstructor (130) that reconstructs the signal based on the identified reconstruction parameter.