Abstract:
Low power wireless communication techniques may be employed in devices that communicate via a wireless body area network, a wireless personal area network, or some other type of wireless communication link. In some implementations the devices may communicate via one or more impulse-based ultra-wideband channels. Inter-pulse duty cycling may be employed to reduce the power consumption of a device. Power may be provided for the transmissions and receptions of pulses by charging and discharging a capacitive element according to the inter-pulse duty cycling. Sub-packet data may be transmitted and received via a common frequency band. A cell phone may multicast to two or more peripherals via wireless communication links.
Abstract:
Low power wireless communication techniques may be employed in devices that communicate via a wireless body area network, a wireless personal area network, or some other type of wireless communication link. In some implementations the devices may communicate via one or more impulse-based ultra-wideband channels. Inter-pulse duty cycling may be employed to reduce the power consumption of a device. Power may be provided for the transmissions and receptions of pulses by charging and discharging a capacitive element according to the inter-pulse duty cycling. Sub-packet data may be transmitted and received via a common frequency band. A cell phone may multicast to two or more peripherals via wireless communication links.
Abstract:
A channel access scheme is provided for a pulse-based ultra-wide band network. Here, concurrent ultra-wide band channels may be established through the use of a pulse division multiple access scheme. An access scheme may employ different states each of which may be associated with different channel parameter state information and/or different duty cycles. For example, a channel access scheme may employ an inactive state, an idle state, a connected state, and a streaming state. Multiple logical channels may be defined for a given ultra-wide band channel via, for example, pulse division multiplexing.
Abstract:
A multiple access technique for a wireless communication system establishes separate channels by defining different time intervals for different channels. In a transmitted reference system different delay periods may be defined between transmitted reference pulses and associated data pulses for different channels. In addition, a multiple access technique may employ a common reference pulse for multiple channels in a transmitted reference system. Another multiple access technique assigns different pulse repetition periods to different channels. One or more of these techniques may be employed in an ultra-wide band system.
Abstract:
A signaling scheme employs transmitted reference pulses having varying phase. The phase of the reference pulses may be varied in a random manner or in accordance with a data stream. In some aspects a transmitter modulates the phase of the reference pulses to encode an additional data stream in a transmitted reference signal. In some aspects these techniques are employed in a heterogeneous network including coherent and non-coherent receivers. In some aspects these techniques may be employed in an ultra-wide band system.
Abstract:
Low power wireless communication techniques may be employed in devices that communicate via a wireless body area network, a wireless personal area network, or some other type of wireless communication link. In some implementations the devices may communicate via one or more impulse-based ultra-wideband channels. Inter-pulse duty cycling may be employed to reduce the power consumption of a device. Power may be provided for the transmissions and receptions of pulses by charging and discharging a capacitive element according to the inter-pulse duty cycling. Sub-packet data may be transmitted and received via a common frequency band. A cell phone may multicast to two or more peripherals via wireless communication links.
Abstract:
In a signal-based gain control scheme, one or more gain levels used for processing signals are selected based on characteristics of previously received signals. For example, different gain levels may be used to receive sets of signals whereupon certain characteristics of the received sets of signals are determined. One or more gain levels are then selected based on these characteristics whereby another signal is processed based on the selected gain level(s). In some aspects, the signal-based gain control scheme may be employed to facilitate two-way ranging operations between two devices. For example, leading edge detection may involve determining a characteristic of a received signal, determining a threshold based on the characteristic, and identifying a leading edge associated with the received signal based on the threshold. In some aspects, the signal-based gain control scheme may be employed in an ultra-low power pulse-based communication system (e.g., in ultra-wideband communication devices).
Abstract:
Phase of an output signal is based on comparison of an oscillating signal with an adjustable threshold. Here, adjustment of the threshold results in a corresponding adjustment of the phase of the output signal. For example, the adjustable threshold may comprise an adjustable bias signal for a transistor circuit whereby the oscillating signal is provided as an input to the transistor circuit and the output of the transistor circuit provides the output signal. In some aspects these phase adjustment techniques may be employed to provide one or more tunable multiphase clocks.
Abstract:
Low power wireless communication techniques may be employed in devices that communicate via a wireless body area network, a wireless personal area network, or some other type of wireless communication link. In some implementations the devices may communicate via one or more impulse-based ultra-wideband channels. Inter-pulse duty cycling may be employed to reduce the power consumption of a device. Power may be provided for the transmissions and receptions of pulses by charging and discharging a capacitive element according to the inter-pulse duty cycling. Sub-packet data may be transmitted and received via a common frequency band. A cell phone may multicast to two or more peripherals via wireless communication links.
Abstract:
Various operations may be performed based on distance-related functions associated with two or more devices. For example, one or more distance-based functions may be used to control whether a device is allowed to request another device to perform one or more functions. Similarly, one or more distance-based functions may be used to control whether a device may perform one or more functions requested by another device. A distance-related function may take various form including, for example, a distance between devices, two or more distances between devices, a rate of change in a relative distance between devices, relative acceleration between devices, or some combination of two or more of the these distance-related functions.