Abstract:
A method for detecting the presence of a transmission signal in a wireless spectrum channel. The frequency of a signal is converted from a first frequency to a second frequency. The signal with the second frequency is filtered to remove signals that are not within the band of the second frequency. An averaged periodogram of the signal is calculated. A value of the averaged periodogram is compared to a threshold. The presence of the transmission signal is detected, if the value of the averaged periodogram exceeds the threshold.
Abstract:
Methods and apparatus for determining if a signal of interest, for exampl e, a licensed signal having or exceeding a predetermined field strength, is present in a wireless spectrum and/or which facilitates such a determination are described. The signal of interest maybe, e.g., a television signal or a wireless microphone signal using licensed television spectrum. The predeter mined field strength may be specified or by a government regulation or rule.
Abstract:
A method for detecting the presence of a transmission signal in a wireless spectrum channel. The frequency of a signal is converted from a first frequency to a second frequency. The signal with the second frequency is filtered to remove signals that are not within the band of the second frequency. An averaged periodogram of the signal is calculated. A value of the averaged periodogram is compared to a threshold. The presence of the transmission signal is detected, if the value of the averaged periodogram exceeds the threshold.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for operating in a television white space (TVWS) network. One example method generally includes receiving, at an apparatus, a message with a field indicating a current version of an unused frequency spectrum map (e.g., a white space map (WSM)), the unused frequency spectrum map indicating channels usable for wireless communications; determining whether the current version of the unused frequency spectrum map is different than a previous version of the unused frequency spectrum map; and using a channel for wireless communications based on the determination. Another example method generally includes accessing a database of available channels for a current location of an apparatus via a neighboring portable or fixed enabling apparatus and enabling one or more portable dependent apparatuses for the wireless communications via one or more of the available channels.
Abstract:
A method for detecting the presence of a transmission signal in a wireless spectrum channel. The frequency of a signal is converted from a first frequency to a second frequency. The signal with the second frequency is filtered to remove signals that are not within the band of the second frequency. An averaged periodogram of the signal is calculated. A value of the averaged periodogram is compared to a threshold. The presence of the transmission signal is detected, if the value of the averaged periodogram exceeds the threshold.
Abstract:
Techniques for use in contending for a portion of a television channel spectrum are disclosed. In some instances, a back-off value is used to decide whether a contender's contention number will be transmitted when the contention channel is free, and the back-off value is determined based on the contention number. In some instances, a contender monitors the contention channel and withdraws from contention if it detects from the contention channel that a higher priority contender is in contention.
Abstract:
Methods and apparatus for sensing features of a signal in a wireless communication system are disclosed. The disclosed methods and apparatus sense signal features by determining a number of spectral density estimates, where each estimate is derived based on reception of the signal by a respective antenna in a system with multiple sensing antennas. The spectral density estimates are then combined, and the signal features are sensed based on the combination of the spectral density estimates.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for managing transmit power in a television white space (TVWS) network. One example method generally includes transmitting a sequence of request-to-send (RTS) messages at different transmit power levels to an apparatus and determining if a clear-to-send (CTS) message was received in response to at least one of the RTS messages corresponding to a particular one of the transmit power levels. Another example method generally includes receiving, at a first apparatus from a second apparatus, a packet that cannot be decoded by the first apparatus; determining at least one of a time or a duration corresponding to the packet; transmitting a query with an indication of the at least one of the time or the duration; and receiving a message from the second apparatus in response to the query, the message identifying the second apparatus as a source of the packet.
Abstract:
An apparatus for wireless communication includes a processing system. The processing system is configured to estimate a power spectral density of a first signal. In addition, the processing system is configured to determine a normalized correlation detector between the estimated power spectral density and a known power spectral density of a second signal. Furthermore, the processing system is configured to determine whether the first signal contains the second signal based on the normalized correlation detector.