Abstract:
A method of data classification for use in a wireless communication system includes obtaining decoder metrics from a decoder. The decoder metrics correspond to data generated by the decoder. The decoder metrics include a symbol error rate (SER) and an energy metric (EM). The method also includes classifying the data into a first category if the data fails a cyclic redundancy check (CRC) check, into a second category if the data passes the CRC check and is determined to be unreliable, or into a third category if the data passes the CRC check and is determined to be reliable. A reliability of the data is determined based on the decoder metrics and an EM threshold.
Abstract:
Certain embodiments of the present disclosure support techniques for interference cancellation in a multi-mode wireless modem that supports coexistence of different radio technologies.
Abstract:
Techniques for the adjustment of a position of Fast Fourier Transform (FFT) window are provided. The adjustment may be based on the condition that the length of channel impulse response is larger than the length of cyclic prefix. The technique may determine a position of the FFT window that attempts to maximize carrier-to-noise (C/N) ratio value measured at the receiver.
Abstract:
A method for combining signals coming from multiple diversity sources may include performing maximal-ratio combining (MRC) based equalization and combining for receiver antenna diversity. The method may also include performing MRC-based equalization and combining for repetition diversity. The method may also include performing MRC-based equalization and combining for duplication diversity. The MRC-based equalization and combining for receiver antenna diversity, the MRC-based equalization and combining for repetition diversity, and the MRC-based equalization and combining for duplication diversity may each be performed separately.
Abstract:
In accordance with a method for processing a received orthogonal frequency division multiple access (OFDMA) signal that comprises a duplicated signal, sub-carriers within the OFDMA signal may be arranged into a duplicated format. The OFDMA signal may be equalized and combined after the sub-carriers have been arranged into the duplicated format. The equalizing and combining may be performed in accordance with a maximum ratio combining (MRC) scheme. The OFDMA signal may be demapped after the equalizing and combining is performed.
Abstract:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
Abstract:
A method and apparatus for combining retransmitted hybrid automatic repeat-request (HARQ) messages at different stages in an orthogonal frequency-division multiplexing (OFDM)/orthogonal frequency-division multiple access (OFDMA) receiver are provided. The type of HARQ combiner used for a particular channel may depend on a number of selection criteria including the modulation order of the transmission, the number of bits needed for the combined signals, and the headroom in the HARQ buffer. For some embodiments, a combination of different types of HARQ combiners may be designed into a receiver and selected on a per-channel basis. Proper selection of a HARQ combining scheme may reduce the required HARQ buffer size and may provide an increased combining gain when compared to conventional HARQ combining techniques.
Abstract:
In accordance with a method for identifying a preamble sequence and for estimating an integer carrier frequency offset, a signal that comprises a preamble sequence from a set of possible preamble sequences is received. A reduced set of integer carrier frequency offset (CFO) candidates may be determined. Cross-correlation operations may be performed with respect to the received signal and multiple candidate transmitted signals. Each candidate transmitted signal may include one of the set of possible preamble sequences. In addition, each candidate transmitted signal may correspond to one of the reduced set of integer CFO candidates. Multiple correlation values may be determined as a result of the cross-correlation operations. The correlation values may be used to identify the preamble sequence and to estimate the integer CFO.
Abstract:
In accordance with a detection method in a wireless communication system, an initial hypothesis for a starting position of a desired signal within a received wireless communication signal may be determined. The desired signal may have a conjugate symmetric property. At least one correlation value may be determined based on the initial hypothesis. The at least one correlation value may indicate the extent to which at least one sample sequence selected from the received signal has the conjugate symmetric property.