Abstract:
Some novel features pertain to an integrated device that includes an encapsulation layer, a via structure traversing the encapsulation layer, and a pad. The via structure includes a via that includes a first side, a second side, and a third side. The via structure also includes a barrier layer surrounding at least the first side and the third side of the via. The pad is directly coupled to the barrier layer of the via structure. In some implementations, the integrated device includes a first dielectric layer coupled to a first surface of the encapsulation layer. In some implementations, the integrated device includes a substrate coupled to a first surface of the encapsulation layer. In some implementations, the integrated device includes a first die coupled to the substrate, where the encapsulation layer encapsulates the first die. In some implementations, the via includes a portion configured to operate as a pad.
Abstract:
A package-on-package (POP) structure is disclosed. The POP structure includes a first die, a second die, and a photo-imaged dielectric (PID) layer. The PID layer is disposed between the first die and the second die. The POP structure also includes a first conductive path from the first die through the PID layer to the second die. The first conductive path extends directly through a first area of the PID layer directly between the first die and the second die. The POP structure further includes a second conductive path from the first die through the PID layer to the second die. A particular portion of the second conductive path is perpendicular to the first conductive path and extends through a second area of the PID layer not directly between the first die and the second die.
Abstract:
A semiconductor package according to some examples of the disclosure may include a base (110) with a first redistribution layer (150) on one side, first (120) and second (130) side-by-side die attached to the base on an opposite side from the first redistribution layer, an interposer (140) attached to active sides of the first and second die to provide an interconnection between the first and second die, a plurality of die vias (180,181) extending from the first and second die to a second redistribution layer (170) on a surface of the package opposite the first redistribution layer, and a plurality of package vias (182) extending through the package between the first and second redistribution layers.
Abstract:
A package-on-package (PoP) structure includes a first die, a second die, and a memory device electrically coupled to the first die and the second die by an interposer between the first die and the second die. The interposer includes copper-filled vias formed within a mold.
Abstract:
Some novel features pertain to an integrated device package that includes an encapsulation portion and a redistribution portion. The encapsulation portion includes a first die, a first set of vias coupled to the first die, a second die, a second set of vias coupled to the second die, a bridge, and an encapsulation layer. The bridge is configured to provide an electrical path between the first die and the second die. The bridge is coupled to the first die through the first set of vias. The bridge is further coupled to the second die through the second set of vias. The encapsulation layer at least partially encapsulates the first die, the second die, the bridge, the first set of vias, and the second set of vias. The redistribution portion is coupled to the encapsulation portion. The redistribution portion includes a set of redistribution interconnects, and at least one dielectric layer.
Abstract:
An integrated device package includes a first die, a second die, an encapsulation portion coupled to the first die and the second die, and a redistribution portion coupled to the encapsulation portion. The encapsulation portion includes an encapsulation layer, a bridge, and a first via. The bridge is at least partially embedded in the encapsulation layer. The bridge is configured to provide a first electrical path for a first signal between the first die and the second die. The first via is in the encapsulation layer. The first via is coupled to the bridge. The first via and the bridge are configured to provide a second electrical path for a second signal to the first die. The redistribution portion includes at least one dielectric layer, and at least one interconnect, in the dielectric layer, coupled to the first via.
Abstract:
A substrate block is provided that has an increased width. The substrate block comprises two substrate bars, and the substrate bars each comprise a substrate and a plurality of filled vias through the substrate. The substrate block may be used to manufacture package substrates, and these package substrate may be incorporated into a PoP structure. The package substrate includes a carrier having a plurality of vertical interconnections and a bar coupled to the vertical interconnections.
Abstract:
An integrated device (e.g., integrated package) that includes a base portion for the integrated device, a first die (206) (e.g., first wafer level die), and a second die (208) (e.g., second wafer level die). The base portion includes a first inorganic dielectric layer (203), a first set of interconnects (280) located in the first inorganic dielectric layer, a second dielectric layer (202) different from the first inorganic dielectric layer, and a set of redistribution metal layers (230,240,250,260) in the second dielectric layer. The first die is coupled to a first surface of the base portion. The second die is coupled to the first surface of the base portion, the second die is electrically coupled to the first die through the first set of interconnects (280).
Abstract:
A package-on-package (POP) structure is disclosed. The POP structure includes a first die, a second die, and a photo-imaged dielectric (PID) layer. The PID layer is disposed between the first die and the second die. The POP structure also includes a first conductive path from the first die through the PID layer to the second die. The first conductive path extends directly through a first area of the PID layer directly between the first die and the second die. The POP structure further includes a second conductive path from the first die through the PID layer to the second die. A particular portion of the second conductive path is perpendicular to the first conductive path and extends through a second area of the PID layer not directly between the first die and the second die.