Abstract:
Exemplary embodiments are directed to methods and devices for transferring or receiving wireless power. A method may include receiving acceptance of at least one wireless power access entity required condition. The method may further include transferring wireless power to at least one electronic device based on the acceptance of the at least one wireless power access entity required condition.
Abstract:
Exemplary embodiments are directed to wireless power management. A method may include detecting one or more wireless chargers for charging an energy storage device of one or more monitored energy storage devices if the energy storage device drops below a threshold value. Moreover, the method may include selecting a charging scheme for an electronic device associated with the energy storage device.
Abstract:
Exemplary embodiments are directed to wireless power. A method may comprise receiving wireless power with a receiver and charging an accumulator with energy from the received wireless power. The method may further include conveying energy from the accumulator to an energy storage device upon a charging level of the accumulator reaching a threshold level.
Abstract:
Techniques for improved low latency frequency switching are disclosed. In one embodiment, a controller (510) receives a frequency switch command and generates a frequency switch signal at a time determined in accordance with a system timer (520). In another embodiment, gain calibration is initiated subsequent to the frequency switch signal delayed by the expected frequency synthesizer settling time. In yet another embodiment, DC cancellation control (540) and gain control (530) are iterated to perform gain calibration, with signaling to control the iterations without need for processor (550) intervention. Various other embodiments are also presented. Aspects of the embodiments disclosed may yield the benefit of reducing latency during frequency switching, allowing for increased measurements at alternate frequencies, reduced time spent on alternate frequencies, and the capacity and throughput improvements that follow from minimization of disruption of an active communication session and improved neighbor selection.
Abstract:
An apparatus and method for filtering a signal in a phase lock loop is disclosed. An typical apparatus for filtering a phase error signal comprises a first filter subcircuit receiving a phase error signal from a phase comparator and filtering the error signal when enabled, a second filter subcircuit receiving the phase error signal from the phase comparator and filtering the error signal when enabled and first and second enable switches which are activated in combination to control filtering of the error signal. The first filter subcircuit is enabled by activating a first combination of the enable switches and the second filter subcircuit is enabled by activating a second combination of the enable switches. A fast acquisition subcircuit can also be used to temporarily underdampen the filter and improve overall performance of the phase lock loop circuit. The filter can be used to obtain multimode operation in a cellular radio.
Abstract:
Exemplary embodiments are directed to selective wireless power transfer. A method may include transferring wireless power to at least one electronic device while varying at least one parameter of the wireless power transfer according to a wireless power transfer scenario.
Abstract:
A novel and improved dual band antenna system comprising an inner antenna element surrounded by an outer antenna element. In a first embodiment, the inner antenna element radiates and receives RF signals in a first RF band, and the outer antenna element radiates and receives RF signals in a second RF band. Optionally, the inner and outer antennas may be coupled together when operating in the first RF band in order to improve the antenna gain pattern of the dual band antenna. In a second embodiment, the inner antenna element radiates and receives RF signals in both the first and second RF bands. In this second embodiment, when operating in the second RF band, the outer antenna element is grounded, thus altering the signal length of the inner antenna element to resonate in the second RF band.
Abstract:
A system and method for generating a local oscillator (LO) frequency in a zero intermediate frequency (IF) receiver or transmitter is presented. A signal is received from a voltage controlled oscillator (VCO). The signal has a VCO frequency. The VCO frequency is divided by a number N to produce a signal having a divided-down frequency. The signal having the VCO frequency is then mixed with the signal having the divided-down frequency to produce an output signal having an output frequency. Local oscillator leakage is reduced. Thus, the receiver or transmitter may operate in multiple wireless communication bands and modes and meet the associated specifications.
Abstract:
A system and method for generating a local oscillator (LO) frequency in a zero intermediate frequency (IF) receiver or transmitter is presented. A signal is received from a voltage controlled oscillator (VCO). The signal has a VCO frequency. The VCO frequency is divided by a number N to produce a signal having a divided-down frequency. The signal having the VCO frequency is then mixed with the signal having the divided-down frequency to produce an output signal having an output frequency. Local oscillator leakage is reduced. Thus, the receiver or transmitter may operate in multiple wireless communication bands and modes and meet the associated specifications.