Abstract:
Various embodiments for managing carrier transmissions after a tune-away on a wireless communication device may include determining whether a network has received transmissions from a first carrier of a first subscription after completion of the tune-away from the first subscription to a second subscription. In response to determining that the network has not received transmissions from the first carrier, the wireless communication device may determine whether a second carrier of the first subscription is transmitting to the network after completion of the tune-away. In response to determining that the second carrier is not transmitting to the network, the wireless communication device may route transmission from the first carrier to the second carrier.
Abstract:
Methods and apparatus for event reporting based spurious dedicated physical channel (DPCH) removal in soft handover include user equipment (UE) management of spurious channels. In one aspect, the disclosure provides methods and apparatus for wireless communication that may include determining that a dedicated physical channel (DPCH) is spurious, removing the DPCH from soft combining, and sending a report indicating that a cell associated with the DPCH is unavailable. Further, the methods and apparatus may include incrementing a counter for the cell associated with the DPCH in response to removing the DPCH, determining whether the counter exceeds a removal threshold, and increasing a time to trigger for sending a report to add the cell to an active set in response to the counter exceeding the removal threshold. A cell associated with a removed DPCH may also be excluded from measurements of a current frequency.
Abstract:
Aspects of the present disclosure provide an apparatus and methods for operating the same that can improve out-of-sync and radio link failure handling in a W-CDMA network. A user equipment (UE) establishes a packet switched (PS) connection between the UE and a base station, wherein the PS connection includes a Fractional Dedicated Physical Channel (F-DPCH). The UE configures an in-sync threshold (Qin) and an outof- sync threshold (Qout) for the F-DPCH, wherein values of the Qin and Qout are set higher than those of corresponding Qin and Qout of a Dedicated Physical Channel (DPCH). The UE further estimates a downlink (DL) Signal to Interference Ratio (SIR) based on one or more transmit power control (TPC) commands of the F-DPCH, and determines whether to release the PS connection based on a comparison of the estimated SIR and Qout of the F-DPCH.
Abstract:
Methods and apparatus for avoiding power scaling and controlling transmit power in uplink data transmission are provided. If a user equipment (UE) would be transmit-power limited when transmitting data concurrently on an uplink high speed dedicated physical control channel (HS-DPCCH) and an uplink data channel, the UE may forgo building data for transmission on the uplink data channel to avoid power scaling. If the UE would be transmit-power limited when transmitting data concurrently on an HS-DPCCH and a dedicated physical control channel (DPCCH), the UE may reduce the transmission power of a portion of the data transmitted on the DPCCH to avoid power scaling. The UE may also boost transmission power of a negative acknowledge transmission above network-specified power level.
Abstract:
Certain aspects of the present disclosure relate to apparatuses and methods of managing signaling radio bearer (SRB) transmissions. In one aspect, the apparatuses and methods are configured to generate a SRB packet comprising signaling information, wherein the SRB packet is configured to be transmitted on a channel according to a scheduling serving grant, determine whether the SRB packet is unable to be transmitted based on resources allocated by the received scheduling serving grant, override the received scheduling serving grant in response to determining that the SRB packet is unable to be transmitted, and transmit at least a part of the SRB packet on the channel. In another aspect, a scheduling information message to indicate whether an additional scheduling severing grant is needed is transmitted on the channel along with at least the part of the SRB packet.
Abstract:
Apparatus and methods include receiving one or more first signals at a user equipment (UE) during a first portion of a transmission time interval (TTI), wherein the one or more first signals are transmitted by a network to the UE using a transport format; determining the transport format upon receiving the one or more first signals and prior to a second portion of the TTI subsequent to the first portion of the TTI; and receiving one or more second signals at the UE during a second portion of the TTI.
Abstract:
Apparatus and methods of receive diversity (RxD) full cell search by a user equipment (UE) in a wireless communication system are described. In an aspect, a first set of received energies of a first signal received at a first antenna and a second set of received energies of a second signal received at a second antenna may be separately determined. Based thereon, a set of peak energies and corresponding antenna indices, along with a slot timing of at least one cell corresponding to the set of peak energies and corresponding antenna indices, may be determined. A frame timing and a scrambling code for the at least one cell then may be determined using a respective one of the first antenna and the second antenna corresponding to each of the set of peak energies and the corresponding antenna indices, along with the respective slot timing of the at least one cell.
Abstract:
One or more aspects of the present disclosure aim to enable a reduced call drop rate and/or improved call performance in calls using 3GPP Release 99 Dedicated Physical Channel (DPCH) signaling, while reducing, or at least not causing a substantially large rise in power consumption at a wireless device, by utilizing selection diversity at a receiver. According to an aspect of the disclosure, a UE invokes a measurement period for detecting a downlink dedicated control channel (DCCH) based on a condition of a radio channel, during an initial portion of a transmission time interval (TTI). The UE samples one or more characteristics of a radio channel utilizing one or more of a plurality of receive chains. If the DCCH is detected during the measurement period, the UE selects one or more receive chains from among the plurality of receive chains in accordance with the one or more sampled characteristics. The UE receives a downlink transmission utilizing the selected one or more receive chains.
Abstract:
A method and apparatus for radio resource control (RRC) state transitions of a user equipment (UE) are provided. For the RRC state transitions of the UE, for example, a reconfiguration message is received at the UE while the UE is in a cell dedicated channel (CELL_DCH) state of the RRC states. The reconfiguration message is configured to transition the UE from the CELL_DCH state to a non-dedicated channel state of RRC states. A plurality of acknowledgement procedures is sent on an uplink to the network, in response to the received reconfiguration message causing the UE to transition from the CELL_DCH state to the non-dedicated channel state.