Abstract:
Systems and methodologies are described that segment or concatenate radio link control (RLC) service data units (SDUs) into RLC protocol data units (PDUs). In accordance with various aspects set forth herein, systems and/or methods are provided that receive a first RLC SDU, partition the first RLC SDU into a first RLC PDU and a second RLC PDU, set a length indicator (LI) field associated with the second RLC PDU to indicate the size of information contained in the second RLC PDU, concatenate the second RLC PDU with a third RLC PDU associated with a second RLC SDU to form a concatenated RLC PDU, and dispatch the first RLC PDU, the concatenated RLC PDU, and a fourth RLC PDU associated with the second RLC SDU.
Abstract:
In a wireless communication system, user equipment (UE) is provided, one or more set of rules are provided for the UE to handle the processing during a measurement gap. In some aspects, the gap measurement may be ignored. In some aspects, the processing is stored and handled at a later in time and gap measurements are performed. Depending on the system, the measurements performed during the gaps may be UE implementation dependent, wherein the UE determines whether to perform the measurement for a given gap. In some instances, the UE may not perform measurements during the gap, thereby giving priority to other processing, such as RACH processing. Depending on the type of processing required (DL-SCH, UL-SCH, TTI bundling, RACH or SR), the UE may store requests and process the measurements during the gap or ignore the gap measurement as if there were no gaps.
Abstract:
Explicit signaling of End of Handover (EoH) advantageously indicates when user equipment (UE) has stopped using Packet Data Convergence Protocol (PDCP) handover mode. Radio Link Control (RLC) Acknowledge Mode (AM) delivers in order ensuring that all reordered packets have been received with no risk of delivering a gap packet when no longer in handover mode that would otherwise cause Hyper Frame Number (HFN) to be out of synchronization. Substantially at a time evolved Base Node (eNB) determines a gap will not be filled, eNB can convey an EoH indication to a served UE and can then deliver the PDCP Service Data Units (SDUs) with gaps to upper layers without delay.
Abstract:
Transmit power is controlled for a first uplink data transmission on Physical Uplink Shared Channel (PUSCH) during random access channel (RACH) procedure. Power control adjustment for the first PUSCH transmission is performed relative to the power spectral density used for successful PRACH transmission as adjusted for bandwidth difference, etc. The uplink Physical random access channel carries the RACH information that is transmitted by the user equipment (UE) during registrations or base station originated calls. A PRACH is composed of a number of preambles and a message portion. The preambles are a series of radio frequency power "steps" that increase in power according to the power step setting until the maximum number of preambles is reached or the base station acknowledges. Once the UE receives a positive indication, it transmits the message portion of the PRACH which consists of message data and control data with independent power gain control.
Abstract:
Systems and methodologies are described that facilitate managing interaction between paging and discontinuous reception (DRX) cycles for users operating in a communication system. As described herein, a connected mode user having an associated DRX cycle can modify its schedule for paging reception to minimize unnecessary periods of activity. For example, a user can initially schedule monitoring of paging occasions that coincide with periods of activity associated with the DRX cycle of the user. If such paging occasions are not sufficient to reach a minimum required number of monitored paging occasions, additional paging occasions can be monitored as needed by scheduling additional periods of activity and/or extending periods of activity specified in the DRX cycle. Additionally or alternatively, a network can synchronize a connected mode DRX cycle associated with a user with an idle mode paging cycle for the user, thereby providing power and performance benefits with low complexity.
Abstract:
Systems and methodologies are described that facilitate classification and identification of a channel associated with a wireless data transmission. As described herein, a channel designated for transmission of a packet can be selected from among multiple usable channels, based on which a bit at a predefined location in the packet can be set to a logical value indicative of the selected channel. As further described herein, extraction of the logical value from the predefined location and identification of the corresponding channel can be performed by a recipient of the packet without requiring parsing of the message. In one example described herein, a Dedicated Control Channel (DCCH) can be identified by setting a Logical Channel Identifier (LCID) bit in a DCCH packet to a predefined value. In another example, a Common Control Channel (CCCH) can be identified by embedding a Boolean constant within a message structure contained in a CCCH packet.
Abstract:
A data packet communication system employs data encryption in a packet data convergence protocol (PDCP) and radio link control (RLC) in Layer 2 of transmission between a transmitter (TX) and a receiver (RX). A single sequence number is used for both the PDCP and RLC to reduce overhead by signaling a TX PDCP first ciphering sequence number to the RX prior to encrypted data packet communication. A sequence number accompanies each RLC PDU, which can encompass concatenated or segmented service data units (SDUs) from the higher layer PDCP. This sequence number is sufficient for the RLC to perform re-ordering, gap detection, retransmission, etc., while also allowing the RX upper layer PDCP to reconstruct a sequenced value used to encrypt content.
Abstract:
Methods and apparatus for determining the quality of service of a network are disclosed. A disclosed methodology for determining quality of service for a network includes determining at least two metrics reflective of network parameters in at least two different protocol layers of the communication network. The metrics are then compared with respective threshold values, and quality of service for the network is determined based on the comparison of the metrics with the respective threshold values.. Corresponding apparatus executing the methodology are also disclosed.
Abstract:
A wireless terminal concurrently associates with multiple wireless local area networks. The wireless terminal may operate in power save mode on both of the WLANs to prevent a disruption of communication on either WLAN. The wireless terminal may adjust the times at which it listens for beacons to enable reception of beacon information even though the beacons for different WLANs may overlap in time. Beacon transmission times also may be scheduled to avoid overlapping transmissions of beacons on different WLANs.
Abstract:
The disclosure is directed to an access terminal, and method for selecting an access point in a communications system. The access terminal may include memory and a processor. The processor may be configured to maintain in the memory a database containing a list of access points that have previously served the access terminal with at least a minimum quality of service, the processor being further configured to use the list to search for an access point to associate with, or search for an access point to handoff the access terminal to during operation. In addition to, or alternatively, the processor may also be configured to maintain in the database a second list of access points. The database may be used by the processor to search for an access point that is not on the second list to associate with, or handoff the access terminal to.