Abstract:
Disclosed is a method for multiple EAP-based authentications in a wireless communication system. In the method, a first master session key (MSK) is generated in a first EAP-based authentication for a first-type access. A first temporal session key (TSK) is generated from the first master session key (MSK). A second EAP-based authentication is performed, using the first temporal session key (TSK), for a second-type access. First-type access and second-type access are provided after the first and second EAP-based authentications are successfully completed.
Abstract:
A route protocol is established whereby a mobile device can communicate to a multitude of (receiving) base stations though a tunnel created through a serving base station. A message that includes a Route Creation Header can be transmitted by the mobile device to create the tunnel. The Route Creation Header is reviewed by the receiving base station while the mobile device is in a Waiting-To-Open State. Various errors might occur with respect to the Route Creation Header. These errors can be conveyed to the mobile device by base station by setting one or more error code fields. Once the errors are resolved, another attempt to create a tunnel with base station can be made, if desired.
Abstract:
A method for improving link efficiency in multicast transmissions is described. A data packet is sent to a multicast server. The data packet is processed. A copy of the data packet is transmitted from the multicast server to a multicast internet protocol (IP) address associated with one or more access terminals. The copy of the data packet is multicast to each of the one or more access terminals using a channel dedicated for multicast traffic that is associated with each of the one or more access terminals.
Abstract:
Various embodiments of methods and systems for dynamically adjusting a peak dynamic power threshold are disclosed. Advantageously, embodiments of the solution for peak dynamic power management optimize a peak dynamic power threshold based on estimations of real-time leakage current levels and/or actual power supply levels to a power domain of a system on a chip ("SoC"). In this way, embodiments of the solution ensure that a maximum amount of available power supply is allocated to dynamic power consumption for processing workloads at an optimum performance or quality of service ("QoS") level without risking that the total power consumption (leakage power consumption + dynamic power consumption) for the power domain exceeds the power supply capacity.
Abstract:
A method includes identifying coexistence issues among radios in a User Equipment (UE). The method also includes submitting a message to a base station that requests reconfiguring of a timing schedule of a first one of the supported radios to provide for periods of inactivity of the first one of the supported radios. The inactive periods provide operating periods for at least a second one of the supported radios. The inactive periods may be measurement gaps.
Abstract:
An apparatus and method for establishing a relay transition time in a network node in a wireless communication system comprising comparing a network node transmit/receive (TX/RX) switch time to a switch threshold; and using a fraction of the cyclic prefix (CP) as a guard period if the network node TX/RX switch time is less than or equal to the switch threshold, or using a sounding reference signal (SRS) configured channel to blank out a last symbol if the network node TX/RX switch time is greater than the switch threshold.
Abstract:
Systems and methodologies are described that facilitate compressing headers for relay nodes. In particular, a plurality of internet protocol (IP) headers, tunneling protocol headers, and/or other routing headers in a packet can be compressed to facilitate efficient communications of packets between relay nodes and/or a donor access point. An access point receiving packets to be compressed can provide a disparate access point with a compression context and an uncompressed packet. The disparate access point can generate a decompression context related to subsequent packets having similar header values and can store the decompression context with the context identifier. The access point can subsequently compress received packets having similar header values and communicate the compressed packets with the context identifier to the disparate access point. The disparate access point can apply the previously generated decompression context associated with the context identifier to decompress the packets.
Abstract:
Systems and methodologies are described that facilitate providing user plane support for internet protocol (IP) relays. Service data units (SDU) received at a radio communication layer can be provided to an upper communication layer, such as a packet data convergence protocol (PDCP) layer, without regard to sequence numbers. The upper communication layer can handle reordering of the received protocol data units. Since communications related to a plurality of devices through one or more IP relays can be mapped over a single bearer, allowing reordering at the upper communication layer can mitigate delay caused where a donor or other upstream access point is delayed in providing a sequential SDU related to one of a plurality of devices downstream. In this regard, SDUs related to other devices can be processed by the upper communication layer while waiting for the sequential SDU.
Abstract:
Systems and methods for switching among heterogeneous networks and inter-working between a source access system and a target access system. An inter-system handoff control component can facilitate setting an IP tunneling by the mobile unit, wherein IP addresses for inter-working security gateway and Radio Access Network of the target access system can be identified. The inter-system handoff control component can then implement tunneling between the source system and the target system, wherein signaling/packeting associated with the target system can be transferred over the source system.
Abstract:
Embodiments disclosed herein relate to methods and systems for grouping pilot signals and using such grouping for pilot strength reporting and set management in multi-carrier communication systems. In one embodiment, an access network may assign a group identifier (or "group ID") to each of the pilot signals associated with the sector, e.g., based on the coverage areas of the pilot signals, and transmit the pilot signals with the corresponding group IDs. PN offset may be used as the group ID. An access terminal may group the pilot signals received into one or more pilot groups in accordance with their group IDs, and select a representative pilot signals from each pilot group for pilot strength reporting. The access terminal may also use the pilot grouping to perform effective set management.