Abstract:
Two-component solventless polyurethane adhesive compositions comprising an isocyanate component and an isocyanate-reactive are disclosed, the compositions comprising an isocyanate component comprising an isocyanate-terminated prepolymer and an isocyanate-reactive component comprising a hydroxy-terminated polyurethane resin, a polyether polyol, a phosphate ester adhesion promoter, and, optionally, a bio-based polyol. Methods for forming laminate structures are also disclosed, the methods comprising forming an adhesive composition by mixing an isocyanate adhesive component comprising an isocyanate-terminated prepolymer and an isocyanate-reactive adhesive component comprising a hydroxy-terminated polyurethane resin, a polyether polyol, a phosphate ester adhesion promoter, and optionally, a bio-based polyol, applying the adhesive composition to a surface of a first substrate, and bringing a surface of a second substrate into contact with the adhesive composition on the surface of the first substrate, thereby forming the laminate structure. Laminate structures are also disclosed.
Abstract:
The present disclosure provides a two-component solventless adhesive composition comprising a polyol component and an isocyanate component. The polyol component comprises a phosphate functional compound, and at least one polyol selected from polyester, polyether, and the combination thereof; and the isocyanate component comprises isocyanate prepolymer that is the reaction product of at least one isocyanate monomer and at least one polyol selected from polyester, polyether, and the combination thereof.
Abstract:
Provided is a waterborne adhesive composition comprising (i) an aqueous medium; (ii) one or more isocyanate compounds dispersed in said aqueous medium, and (iii) one or more functional silane compounds dispersed in said aqueous medium.
Abstract:
Laminates of polymeric films and solvent-based polyurethane adhesive formulations for preparing them are provided. The adhesive formulations include a hydroxyl-terminated polyester that forms crystalline polyester domains after reaction with an appropriate polyisocyanate, but prior to completion of cure. The result is an adhesive layer that substantially enhances the oxygen barrier properties of the adhesive and, therefore, of the laminate as a whole, while offering desirable convenience of application even at relatively low temperatures. The laminates may also exhibit desirable retention of barrier properties following flex-cracking.