Abstract:
The results of electronic narrative analytics can be visualized. For example, an electronic communication that includes multiple narratives can be received. Each narrative can be segmented into respective blocks of characters. Multiple sentiments associated with the respective blocks of characters can be determined. Multiple sentiment patterns can be determined based on the multiple sentiments. The multiple sentiment patterns can be categorized into multiple sentiment pattern groups. Also, multiple semantic tags associated with the multiple sentiment patterns can be determined. Further, the multiple narratives can be categorized into multiple topic sets. A graphical user interface can be displayed visually indicating at least a portion of: the multiple sentiments, the multiple sentiment pattern groups, the multiple semantic tags, or the multiple topic sets.
Abstract:
Training data for training a neural network usable for electronic sentiment analysis can be automatically constructed. For example, an electronic communication usable for training the neural network and including multiple characters can be received. A sentiment dictionary including multiple expressions mapped to multiple sentiment values representing different sentiments can be received. Each expression in the sentiment dictionary can be mapped to a corresponding sentiment value. An overall sentiment for the electronic communication can be determined using the sentiment dictionary. Training data usable for training the neural network can be automatically constructed based on the overall sentiment of the electronic communication. The neural network can be trained using the training data. A second electronic communication including an unknown sentiment can be received. At least one sentiment associated with the second electronic communication can be determined using the neural network.