Abstract:
A hearing system includes one or more hearing devices configured to be worn by a user. Each hearing device includes a signal source that provides an input electrical signal representing a sound of a virtual source. A filter implements a head related transfer function (HRTF) to add spatialization cues associated with a virtual location of the virtual source to the electrical signal and outputs a filtered electrical signal that includes the spatialization cues. A speaker of the hearing device converts the filtered electrical signal into an acoustic signal and plays the acoustic signal to the user. The system includes motion tracking circuitry that tracks motion of the user as the user moves in a direction of a perceived location that the user perceives to be the virtual location of the virtual source. Head related transfer function (HRTF) individualization circuitry determines a difference between the virtual location and the perceived location in response to the motion of the user. The HRTF individualization circuitry individualizes the HRTF based on the difference.
Abstract:
Disclosed herein, among other things, are apparatus and methods for annoyance perception and modeling for hearing-impaired listeners. One aspect of the present subject matter includes a method for improving noise cancellation for a wearer of a hearing assistance device having an adaptive filter. In various embodiments, the method includes calculating an annoyance measure or other perceptual measure based on a residual signal in an ear of the wearer, the wearer's hearing loss, and the wearer's preference. A spectral weighting function is estimated based on a ratio of the annoyance measure or other perceptual measure and spectral energy. The spectral weighting function is incorporated into a cost function for an update of the adaptive filter. The method includes minimizing the annoyance or other perceptual measure based cost function to achieve perceptually motivated adaptive noise cancellation, in various embodiments.
Abstract:
A hearing system performs nonlinear processing of signals received from a plurality of microphones using a neural network to enhance a target signal in a noisy environment. In various embodiments, the neural network can be trained to improve a signal-to-noise ratio without causing substantial distortion of the target signal. An example of the target sound includes speech, and the neural network is used to improve speech intelligibility.
Abstract:
A hearing system includes one or more hearing devices configured to be worn by a user. Each hearing device includes a signal source that provides an input electrical signal representing a sound of a virtual source. A filter implements a head related transfer function (HRTF) to add spatialization cues associated with a virtual location of the virtual source to the electrical signal and outputs a filtered electrical signal that includes the spatialization cues. A speaker of the hearing device converts the filtered electrical signal into an acoustic signal and plays the acoustic signal to the user. The system includes motion tracking circuitry that tracks motion of the user as the user moves in a direction of a perceived location that the user perceives to be the virtual location of the virtual source. Head related transfer function (HRTF) individualization circuitry determines a difference between the virtual location and the perceived location in response to the motion of the user. The HRTF individualization circuitry individualizes the HRTF based on the difference.