Abstract:
A hearing system includes a pair of first and second hearing devices wirelessly coupled to a remote device that includes a microphone. One or more gains can each be calculated as a function of a first microphone signal received from the first hearing device, a second microphone signal received from the second hearing device, and a remote microphone signal received from the remote device. The function can be designed to improve speech intelligibility in a noisy environment. The one or more gains are applied to the first and second microphone signals to produce output sounds by the first and second hearing devices.
Abstract:
In various embodiments, a system is used to provide an apparatus configured to measure sound in an ear canal of a wearer's ear at a distance from a tympanic membrane of the ear. The sound is measured and received by the apparatus to produce a signal. A frequency analysis is performed on the signal to determine output as a function of the frequency and to determine the frequency of the minima (null). Further, a distance equal to a quarter wavelength of the null frequency is calculated. A correction factor associated with the quarter wavelength is retrieved and applied to the output to generate a corrected output. An estimated sound pressure level at the tympanic membrane from the corrected output is produced.
Abstract:
Disclosed herein, among other things, are apparatus and methods for annoyance perception and modeling for hearing-impaired listeners. One aspect of the present subject matter includes a method for improving noise cancellation for a wearer of a hearing assistance device having an adaptive filter. In various embodiments, the method includes calculating an annoyance measure or other perceptual measure based on a residual signal in an ear of the wearer, the wearer's hearing loss, and the wearer's preference. A spectral weighting function is estimated based on a ratio of the annoyance measure or other perceptual measure and spectral energy. The spectral weighting function is incorporated into a cost function for an update of the adaptive filter. The method includes minimizing the annoyance or other perceptual measure based cost function to achieve perceptually motivated adaptive noise cancellation, in various embodiments.