22.
    发明专利
    未知

    公开(公告)号:DE10206388A1

    公开(公告)日:2003-08-28

    申请号:DE10206388

    申请日:2002-02-15

    Abstract: A process is described for liquefaction of a hydrocarbon-rich stream, especially a natural gas stream, at least indirect heat exchange taking place between the hydrocarbon-rich stream to be liquefied and the refrigerant mixture of at least one refrigerant mixture circuit, and the refrigerant mixture being separated after completed supercooling into a gaseous fraction and a liquid fraction and these fractions being recombined before and/or during the reheating of the refrigerant mixture. According to the invention, a gas fraction ( 9 ) that is identical or similar in composition is added at least from time to time to the gas fraction ( 4 ) that has been obtained in the separation (D). In doing so, the addition of the gas fraction ( 9 ) that is identical or similar in composition takes place when a minimum amount of the gas fraction ( 4 ) obtained in the separation (D) of the refrigerant mixture is not reached.

    23.
    发明专利
    未知

    公开(公告)号:NO20024383D0

    公开(公告)日:2002-09-13

    申请号:NO20024383

    申请日:2002-09-13

    Applicant: STATOIL ASA

    Abstract: The invention relates to a natural gas liquefaction process and particularly to one suited to use offshore. The invention provides a natural gas liquefaction apparatus wherein a carbon dioxide based pre-cooling circuit is provided in a cascade arrangement with a main cooling circuit. The invention also extends to a natural gas liquefaction apparatus wherein a main cooling circuit uses as a refrigerant a gas stream, at least a portion of which is derived from a raw natural gas source.

    Method for liquefying a flow rich in hydrocarbons

    公开(公告)号:AU8106798A

    公开(公告)日:1998-12-30

    申请号:AU8106798

    申请日:1998-05-27

    Abstract: In the liquefaction of a hydrocarbon by indirect heat exchange with the refrigerant mixture of a refrigerant mixture cycle, the refrigerant mixture being compressed in multiple stages, the compressed refrigerant mixture (23) is at least partially condensed (E4) downstream of the penultimate compressor stage and is fractionated (D4) into a higher-boiling liquid fraction (26) and a lower-boiling gas fraction (24). The lower-boiling gas fraction (24) is compressed to the final pressure, partially condensed (E5) and fractionated (D5) into a lower-boiling gas fraction (10) and a higher-boiling liquid fraction (27). The higher-boiling liquid fraction (27) is added to the partially condensed refrigerant mixture stream (23), and the gas fraction (10) forms the lower-boiling refrigerant mixture fraction and the liquid fraction (26) forms the higher boiling refrigerant mixture fraction of the refrigerant mixture cycle. Alternatively, the compressed refrigerant mixture (20, 31, 34) can be partially condensed (E3, E4, E5) after each compressor stage and fractionated in each case into a lower-boiling gas fraction (21, 32, 10) and a higher-boiling liquid fraction (30, 33, 35). Only the gas fraction (21, 32) from the partial condensation (E3, E4) in each case is further compressed and the liquid fractions (33, 35) from the second fractionation (D4, D5) are added to the partially condensed stream (20) from the first compressor stage upstream of its fractionation (D3). The gas fraction (10) from the final fractionation (D5) forms the lower-boiling refrigerant mixture fraction and the liquid fraction (30) from the first fractionation (D3) forms the higher-boiling refrigerant mixture fraction of the refrigerant mixture cycle.

    Cooling water system
    29.
    发明专利

    公开(公告)号:AU777798B2

    公开(公告)日:2004-10-28

    申请号:AU2412601

    申请日:2000-12-22

    Applicant: STATOIL ASA

    Abstract: A system for supplying cooling water to a process on board a floating vessel for the production of hydrocarbons, wherein the vessel (1) is anchored by means of a bottom-anchored turning unit (20) mounted in a receiving space (7) in the hull (34) of the vessel and allowing turning of the vessel (1) about the turning unit, and wherein the turning unit (20) supports a swivel unit (24) for the transfer of hydrocarbons from production risers (28) extending between the seabed and the turning unit (20), the system comprising a conduit means (30) depending from the vessel (1) to a depth for taking in cooled sea water, and a pump means (44) for pumping of the sea water from the conduit to a place of use for the process. The turning unit (20) is designed as a seawater swivel, the unit being provided with one or more passages (29) for receiving upper end portions of respective seawater risers (30) constituting the conduit means, and with a means for transferring sea water from the upper end portions of the risers (30) to an annulus (31) arranged at the boundary surface between mutually movable parts (21, 22) of the turning unit (20) or between the tuning unit (20) and the vessel hull (34), and communicating with one or more passages (41) arranged in the vessel hull and leading to said place of use, a seawater sealing means (37, 39) being arranged on each side of the annulus (31).

Patent Agency Ranking