Abstract:
Methods and systems for optimizing storage of data items in a memory of an radio frequency identification tag (RFID) are provided. The data structure for optimized storage includes a packed object having a length section including an indication of a number of identifiers in the packed object, an identifier section including a directory of indices representing an identifier for each data item contained within the packed object and a data section encoding a data portion associated with each data item included in the data section.
Abstract:
A system and method in a radio frequency identification (RFID) tag for writing and erasing user memory. A write command is received at the tag to write data into user memory of the tag. Based on receipt of the write command, a user memory flag in a first memory bank of the tag is set, and the data is written into a second memory bank of the tag. An erase command is received at the tag to erase data stored in the user memory of the tag. Based on receipt of the command to erase, the user memory flag in the first memory bank is cleared, and data stored in the second memory bank is erased.
Abstract:
Methods, systems, and apparatuses for reconstitution of data for failed radio frequency identification (RFID) tags are described. The tag's information is segmented, optionally compressed, and encoded into a plurality of optical representations. Alternatively, or in addition, a portion or all of the tag's information is stored in a non-optical format. Upon failure of a tag read for any reason (e.g., tag failure, reader failure, operator error, environmental reasons, etc.), the data is reconstituted from the optical representations. Alternatively, or in addition, the reconstitution includes incorporating the information stored in a non-optical format.
Abstract:
Methods, systems, and apparatuses for RFID tags, RFID readers, communications algorithms, and RFID-related applications are described herein. In an aspect of the invention, an RFID tag is capable of storing data, receiving a signal from a reader, determining a response taking into account the tag mode and the data, and transmitting a response to the reader. The data includes a first plurality of bits and a second plurality of bits. The tag mode may be set by a current or a prior command by the reader. Depending on the tag mode, the response may be complete, or the second plurality of bits may be truncated, compressed, or encrypted. In an aspect of the invention, the response includes an implicit indication of whether the response is complete, truncated, encrypted, or compressed. In another aspect of the invention, a command from the reader indicates how many bits should be truncated, compressed, or encrypted.
Abstract:
A system and method for encoding scanner signal strength and timing information provided, possibly on multiple signal lines, from a digitizer circuit into a signal that can be transmitted on a single line to a modified decoder. A multiplexing device multiplexes the multiple signals, which can be multi-bit or dual-DBP signals, into a single signal.
Abstract:
Described is a personalized shipment system. The user is registered by providing user data which is associated with a unique user identifier ("UUI"). Label data is generated for each label which includes a unique label identifier ("ULI") in a machine language ("ML"). The ULI is associated with the UUI in a database. An item to be shipped with a label and recipient data which includes a destination data ("DD") of the item is received. When the DD is not in the ML, the DD is translated into ML DD ("MLDD"). The ULI and the MLDD are obtained using a machine capable of reading the ML during the item's shipment. The tracking data is recorded the database based on the ULI and the ML data. The tracking data regarding shipment progress of the item is provided in response to a request referencing the UUI and/or the DD.
Abstract:
A system and method for encoding scanner signal strength and timing information provided, possibly on multiple signal lines, from a digitizer circuit into a signal that can be transmitted on a single line to a modified decoder. A multiplexing device multiplexes the multiple signals, which can be multi-bit or dual-DBP signals, into a single signal.