Chemical processing microsystems, diffusion-mixed microreactors and methods for preparing and using same

    公开(公告)号:AU3719400A

    公开(公告)日:2000-09-21

    申请号:AU3719400

    申请日:2000-03-03

    Abstract: A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors (600) and, in a preferred embodiment, a plurality of microseparators (900) integral with the chemical processing microsystem (10). The microreactors (600) are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array (100). The material array (100) comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators (900) are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array (700). The adsorbent array (700) comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.

    CHEMICAL PROCESSING MICROSYSTEMS, DIFFUSION-MIXED MICROREACTORS AND METHODS FOR PREPARING AND USING SAME

    公开(公告)号:CA2330569A1

    公开(公告)日:2000-09-08

    申请号:CA2330569

    申请日:2000-03-03

    Abstract: A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors (600) and, in a preferred embodiment, a plurality of microseparators (900) integral with the chemical processing microsystem (10). The microreactors (600) are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array (100). The material array (100) comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators (900) are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array (700). The adsorbent array (700) comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.

    CHEMICAL PROCESSING MICROSYSTEMS, DIFFUSION-MIXED MICROREACTORS AND METHODS FOR PREPARING AND USING SAME

    公开(公告)号:CA2330569C

    公开(公告)日:2006-11-07

    申请号:CA2330569

    申请日:2000-03-03

    Abstract: A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsytem comprises a plurality of microreactors (600) and, in a preferred embodiment, a plurality of microseparators (900) integral with the chemical processing microsystem (10). The microreactors (600) are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array (100). The material array (100) comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators (900) are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array (700). The adsorbent array (700) comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing mcrosystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.

    29.
    发明专利
    未知

    公开(公告)号:DE60017702T2

    公开(公告)日:2006-04-06

    申请号:DE60017702

    申请日:2000-03-03

    Abstract: A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors (600) and, in a preferred embodiment, a plurality of microseparators (900) integral with the chemical processing microsystem (10). The microreactors (600) are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array (100). The material array (100) comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators (900) are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array (700). The adsorbent array (700) comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.

    30.
    发明专利
    未知

    公开(公告)号:DE60108482T2

    公开(公告)日:2006-02-16

    申请号:DE60108482

    申请日:2001-03-07

    Abstract: Parallel flow reaction systems comprising four or more reaction channels are disclosed. Distribution systems, and parallel flow reaction systems comprising such distribution systems are also disclosed. Specifically, the distribution systems comprise a feed-composition subsystem for providing a different feed composition to each of the four or more reactors. In preferred embodiments, the feed composition subsystem comprises at least one set of four or more feed-component flow restrictors, each of the four or more feed-component flow restrictors having a flow resistance that varies relative to other flow restrictors in the set.

Patent Agency Ranking