Abstract:
A display device includes a display panel that includes a display area and a first peripheral area adjacent to the display area. The first peripheral area includes a bendable region extending across the display panel and a plurality of signal lines partially included in the bendable region. The plurality of signal lines includes a first and second group adjacent to each other in the bendable region. The first group includes two or more first signal lines that transmit signals of a first polarity. The second group includes two or more second signal lines that transmit signals of a second polarity different from the first polarity. The first and second group are separated by a first interval, and signal lines within the first or second group are separated by a second interval. The first interval is greater than the second interval.
Abstract:
A method of forming a polycrystalline silicon layer includes forming a first amorphous silicon layer and forming a second amorphous silicon layer such that the first amorphous silicon layer and the second amorphous silicon layer have different film qualities from each other, and crystallizing the first amorphous silicon layer and the second amorphous silicon layer using a metal catalyst to form a first polycrystalline silicon layer and a second polycrystalline silicon layer. A thin film transistor includes the polycrystalline silicon layer formed by the method and an organic light emitting device includes the thin film transistor.
Abstract:
A display device includes a substrate, a passivation layer on the substrate and including an area having a first thickness and an area having a second thickness less than the first thickness, a first electrode on the passivation layer and including at least two sub-electrodes spaced apart from each other by a slit having two ends, a light emitting layer on the first electrode, and a second electrode on the light emitting layer. Both ends of the slit are in one the area of the passivation layer having the second thickness.
Abstract:
A display device including: a substrate; a first semiconductor layer disposed on the substrate; a second semiconductor layer disposed on the substrate and adjacent to the first semiconductor layer; a first insulation layer disposed on both the first semiconductor layer and the second semiconductor layer, the first insulation layer including a first opening forming a space between the first semiconductor layer and the second semiconductor layer; and a second insulation layer disposed on the first insulation layer and that fills the first opening.
Abstract:
A method of manufacturing a thin film transistor (TFT) comprises forming a buffer layer, an amorphous silicon layer, and an insulating layer on a substrate; crystallizing the amorphous silicon layer as a polycrystalline silicon layer; forming a semiconductor layer and a gate insulating layer which have a predetermined shape by simultaneously patterning the polycrystalline silicon layer and the insulating layer; forming a gate electrode including a first portion and a second portion by forming and patterning a metal layer on the gate insulating layer. The first portion is formed on the gate insulating layer and overlaps a channel region of a semiconductor layer, and the second portion contacts the semiconductor layer. A source region and a drain region are formed on the semiconductor layer by doping a region of the semiconductor layer. The region excludes the channel region overlapping the gate electrode and constitutes a region which does not overlap the gate electrode. An interlayer insulating layer is formed on the gate electrode so as to cover the gate insulating layer; contact holes are formed on the interlayer insulating layer and the gate insulating layer so as to expose the source region and the drain region, and simultaneously an opening for exposing the second portion is formed. A source electrode and a drain electrode are formed by patterning a conductive layer on the interlayer insulating layer. The source electrode and the drain electrode are electrically connected to the source region and the drain region via the contact holes, and simultaneously the second portion exposed via the opening is removed.
Abstract:
A display device includes first and second signal lines, first and second signal pads, and a pad insulating layer overlapping with the first and second signal lines. The first signal pad includes an intermediate conductive pattern overlapping with and connected to an end portion of the first signal line, and an upper conductive pattern on the intermediate conductive pattern, the upper conductive pattern being exposed through the pad insulating layer. The intermediate conductive pattern includes a first portion overlapping with the end portion of the first signal line, and a second portion between the end portion of the first signal line and an end portion of the second signal line and extending from the first portion. The upper conductive pattern is connected to the second portion of the intermediate conductive pattern.
Abstract:
An electronic panel may include a plurality of sensing electrodes and a plurality of sensing lines. The sensing lines may include a plurality of first group sensing lines and a plurality of second group sensing lines, which are spaced apart from each other in a specific direction and are alternately arranged with respect to each other. Each of the first group sensing lines and the second group sensing lines may include a first pattern layer and a second pattern layer, which are spaced apart from each other with an insulating layer interposed therebetween and are coupled to each other through the insulating layer. Each of the first group sensing lines may include a first pattern layer in a specific region, and each of the second group sensing lines may include a second pattern layer in the specific region.
Abstract:
A method of manufacturing a thin film transistor (TFT) comprises forming a buffer layer, an amorphous silicon layer, and an insulating layer on a substrate; crystallizing the amorphous silicon layer as a polycrystalline silicon layer; forming a semiconductor layer and a gate insulating layer which have a predetermined shape by simultaneously patterning the polycrystalline silicon layer and the insulating layer; forming a gate electrode including a first portion and a second portion by forming and patterning a metal layer on the gate insulating layer. The first portion is formed on the gate insulating layer and overlaps a channel region of a semiconductor layer, and the second portion contacts the semiconductor layer. A source region and a drain region are formed on the semiconductor layer by doping a region of the semiconductor layer. The region excludes the channel region overlapping the gate electrode and constitutes a region which does not overlap the gate electrode. An interlayer insulating layer is formed on the gate electrode so as to cover the gate insulating layer; contact holes are formed on the interlayer insulating layer and the gate insulating layer so as to expose the source region and the drain region, and simultaneously an opening for exposing the second portion is formed. A source electrode and a drain electrode are formed by patterning a conductive layer on the interlayer insulating layer. The source electrode and the drain electrode are electrically connected to the source region and the drain region via the contact holes, and simultaneously the second portion exposed via the opening is removed.
Abstract:
A method and system for monitoring crystallization of an amorphous silicon (a-Si) thin film, and a method of manufacturing a thin film transistor (TFT) by using the method and system are disclosed. The method of monitoring the crystallization of the a-Si thin film includes: irradiating light from a light source onto a monitoring a-Si thin film to anneal the monitoring a-Si thin film; annealing the monitoring a-Si thin film and concurrently measuring a Raman scattering spectrum of light scattered by the monitoring a-Si thin film at set time intervals; and calculating a crystallization characteristic value of the monitoring a-Si thin film based on the Raman scattering spectrum.
Abstract:
A display device includes first and second signal lines, first and second signal pads, and a pad insulating layer overlapping with the first and second signal lines. The first signal pad includes an intermediate conductive pattern overlapping with and connected to an end portion of the first signal line, and an upper conductive pattern on the intermediate conductive pattern, the upper conductive pattern being exposed through the pad insulating layer. The intermediate conductive pattern includes a first portion overlapping with the end portion of the first signal line, and a second portion between the end portion of the first signal line and an end portion of the second signal line and extending from the first portion. The upper conductive pattern is connected to the second portion of the intermediate conductive pattern.