Abstract:
A stage circuit that includes a driver configured to receive a start signal and generate a first signal and an inverted first signal using a first clock signal and a second clock signal, and a first generator configured to generate a second signal using a previous stage first signal and a previous stage inverted first signal supplied from a driver of a previous stage circuit, and a next stage first signal supplied from a driver of a next stage circuit. The driver and the first generator may be electrically connected to a first power input terminal to which first power is may be input and a second power input terminal to which second power is may be input.
Abstract:
The present disclosure relates to an apparatus for fabricating a display panel including: an attachment member having a fixing portion in a pressurization direction to which a pressurization header is fixed, an attachment driving member configured to move the attachment member and the pressurization header in the pressurization direction or a detachment direction through a fixing frame of the attachment member, a first pressure sensing module between the pressurization header and the attachment member and configured to generate first pressure detection signals according to pressure applied to the pressurization header, a gradient setting module configured to set a gradient of the pressurization header based on magnitudes of the first pressure detection signals, and a gradient control module configured to adjust gradients of the pressurization header, the attachment member, and the fixing frame according to control of the gradient setting module.
Abstract:
An embodiment of the present inventive concept provides a liquid crystal display, including: a first gate line; a first data line crossing the first gate line; a first transistor including a gate electrode connected to the first gate line, a source electrode connected to the first data line, and a drain electrode; a first connecting line connected to the drain electrode; a first contact portion connected to the first connecting line; and a first pixel electrode connected to the first contact portion, wherein the first pixel electrode may be disposed between the first transistor and the first contact portion.
Abstract:
A liquid crystal display device may include a gate line, a data line, a storage electrode set, a transistor, a pixel electrode, and repair member. The gate line may transmit a gate signal. The data line may transmit a data signal. The transistor may include a gate electrode connected to the gate line, a source electrode connected to the data line, and a drain electrode connected to the pixel electrode. The drain electrode and the storage electrode set may overlap each other and form a storage capacitor. The repair member may be formed of an electrically conductive material, may be electrically insulated from each of the drain electrode and the data line, and may overlap the storage electrode set.
Abstract:
A display device includes: a gate line (GL); a semiconductor pattern (SP) on the GL; a data line (DL); a voltage division reference line (VDRL); and first to third switching elements (SWE) overlapping the SP. The first SWE includes a first source electrode (SE) connected to the DL, a first drain electrode (DE) spaced apart from the first SE, and a first gate electrode (GE) connected to the GL. The second SWE includes a second SE connected to the DL, a second DE spaced apart from the second SE, and a second GE connected to the GL. The third SWE includes a third SE connected to the VDRL, a third DE connected to the second SE, and a third GE connected to the GL. The first SE, the first DE, the second SE, and the second DE are sequentially arranged across and on the SP in a first direction.
Abstract:
Provided is a liquid crystal display capable of reducing a texture by increasing a liquid crystal control ability. The liquid crystal display includes a first electrode and a second electrode facing each other with a liquid crystal layer therebetween. The first electrode includes a horizontal extension forming a boundary between adjacent subregions and a vertical extension connected to the horizontal extension, and the horizontal extension includes a portion which has a largest width at a position proximate to the vertical extension, and which has a smaller width at a position farther from the vertical extension.
Abstract:
Provided is a liquid crystal display capable of reducing a texture by increasing a liquid crystal control ability. The liquid crystal display includes a first electrode and a second electrode facing each other with a liquid crystal layer therebetween. The first electrode includes a horizontal extension forming a boundary between adjacent subregions and a vertical extension connected to the horizontal extension, and the horizontal extension includes a portion which has a largest width at a position proximate to the vertical extension, and which has a smaller width at a position farther from the vertical extension.
Abstract:
A thin film transistor array panel includes a first subpixel electrode and a second subpixel electrode electrically connected with a drain electrode through a first contact hole and a second contact hole, respectively. The first subpixel electrode and the second subpixel electrode include a plurality of vertical stems, a plurality of horizontal stems, and a plurality of branch electrodes. The first subpixel electrode is formed above a gate line and the second subpixel electrode is formed below a gate line. The thin film transistor array panel further includes a first protrusion formed in the plurality of vertical stems of the first subpixel electrode and the plurality of vertical stems of the second subpixel electrode.
Abstract:
A display device includes a display substrate, on which a display area and a non-display area are defined, a plurality of gate lines arranged in the display area to extend in a first direction, a gate driving unit including a plurality of stages which outputs gate signals to the plurality of gate lines, and a plurality of pixel rows disposed in the display area and connected to the plurality of gate lines, where a driving area and an electrode area are defined in the display area between two adjacent pixel rows in a second direction among the plurality of pixel rows, at least a part of the plurality of stages is disposed in the driving area, and a compensation electrode is disposed in the electrode area.
Abstract:
An organic light emitting diode display includes a display substrate including a first substrate and a plurality of pixel light emitting units on the first substrate, and an encapsulation substrate including a second substrate facing the display substrate, and a main reflecting member on the second substrate, the main reflecting member including a light emitting opening at a position corresponding to at least one of the pixel light emitting units, and an auxiliary opening dividing the main reflecting member into a plurality of sub-reflecting members.