Abstract:
A defect inspection method includes: recognizing image peaks that are reference positions of image patterns included an inspection image; performing filtering on a reference image including reference patterns, recognizing reference peaks, and then selecting some of the reference peaks as peak samples; calculating candidate correction constants by overlapping the filtered inspection image and the filtered reference image, and then selecting a primary correction constant among the candidate correction constants; applying the first correction constant to the reference image and selecting a secondary correction constant by matching the image peaks to the reference peaks included in a primary corrected reference image, and then applying the secondary correction constant to the primary corrected reference image and forming a secondary corrected reference image aligned with the inspection image; and performing a defect inspection on the inspection image by matching the image patterns to reference patterns included in the secondary corrected reference image.
Abstract:
A variable resistance memory device includes a pillar, a resistance change layer provided at a side surface of the pillar, a semiconductor layer provided at a side surface of the resistance change layer, a gate insulating layer provided at a side surface of the semiconductor layer, a plurality of isolating layers and a plurality of gate electrodes alternately arranged along a surface of the gate insulating layer, and an internal resistance layer between the resistance change layer and the semiconductor layer, where a resistance of the internal resistance layer is greater than a resistance of the semiconductor layer when the semiconductor layer includes conductor characteristics and the resistance of the internal resistance layer is less than the resistance of the semiconductor layer when the semiconductor layer includes insulator characteristics.
Abstract:
An apparatus is provided. The apparatus includes a spinner configured to hold a wafer, a nozzle configured to supply a liquid chemical onto an upper surface of the wafer, and a laser module configured to heat the wafer by radiating a laser beam to a lower surface of the wafer while the nozzle supplies the liquid chemical onto the upper surface of the wafer.
Abstract:
A semiconductor device includes a lower structure, a stack structure including gate layers and interlayer insulating layers alternately stacked on the lower structure in a first direction, and a channel structure in a channel hole passing through the stack structure. The channel structure includes a variable resistance material layer in the channel hole, a data storage material layer between the variable resistance material layer and a sidewall of the channel hole, and a channel layer between the data storage material layer and the sidewall of the channel hole, the channel layer includes a first element, the variable resistance material layer includes a second element, different from the first element, oxygen, and oxygen vacancies, and the data storage material layer includes the first element, the second element, oxygen, and oxygen vacancies.
Abstract:
A memory device including a first conductive line on a substrate and extending in a first horizontal direction; a second conductive line on the first conductive line and extending in a second horizontal direction that is perpendicular to the first horizontal direction; and a memory cell between the first conductive line and the second conductive line, the memory cell including a variable resistance memory layer, a buffer resistance layer, and a switch material pattern, extending in a vertical direction that is perpendicular to the first horizontal direction and the second horizontal direction, and having a tapered shape with a decreasing horizontal width along the vertical direction, wherein at least a part of the variable resistance memory layer and at least a part of the buffer resistance layer of the memory cell are at a same vertical level.
Abstract:
A switching element includes a lower barrier electrode disposed on a substrate, a switching pattern disposed on the lower barrier electrode, and an upper barrier electrode disposed on the switching pattern. The switching pattern includes a first switching pattern, and a second switching pattern disposed on the first switching pattern and having a density different from a density of the first switching pattern.
Abstract:
Disclosed are a method of recognizing a translation situation and performing a translation function, and an electronic device implementing the same. The electronic device recognizes a situation involving translation and automatically performs a translation function, thereby improving user convenience. An electronic device includes an audio module configured to receive and output audio signal, and a processor. A language translation program is executed in response to detecting that an audio signal received through the audio module includes at least a first language and a second language, a portion of the audio signal that is in the second language is translated into the first language, and the translated portion is outputted through the audio module.