Abstract:
Example systems and methods for non-destructive evaluation of depressions on a surface of an object are provided. One example system includes a measurement apparatus having a two-dimensional ultrasonic transducer array, a delay line material, a sealing member position such that the sealing member forms a cavity between the delay line material and a surface of the object, and a liquid inlet for injecting a liquid into the cavity. The example system also includes a processor configured to determine, using ultrasonic signals received from the two-dimensional ultrasonic transducer array, at least one property of a depression such as a dent on the surface of an object. The example system may also be configured to provide an output that is indicative of whether the at least one property of the depression satisfies a predetermined criterion. Another example system includes a compressible elastomeric delay line material that conforms to a surface of an object.
Abstract:
A holder for attaching an acoustic emission sensor to a non-metallic and non-magnetic material has a tubular body with a closed top end and an open bottom end through which the sensor is insertable into the tubular body. The closed top end has a plurality of unitary flexible flaps angularly extending inwardly from an inner surface of the enclosed top end. An inner surface of the tubular body has a plurality of spacers extending radially inward proximate the bottom end of the tubular body. The unitary flexible flaps and the spacers fix the sensor within the tubular body. The tubular body may also have a plurality of capture tabs extending outwardly from an exterior surface thereof proximate the open bottom end that are slidably and removably engageable with an engagement keyway in a retainer bracket that is affixed to a non-metallic and non-magnetic material.
Abstract:
Method and apparatus for detecting defects in a laminate of uncured, compacted composite sheets. After a number of plies of composite sheets are arranged and compacted, a burst of heat energy is applied to a top surface of the laminate and a digital thermographic camera captures images of the top surface. A computer processor measures heat characteristics of the top surface to identify regions of the top surface with different heat characteristics. Such different areas are identified as regions that include a defect. The defect regions can be repaired by applying additional compaction and/or by removing at least a portion of some layers, removing any foreign object debris, replacing the layers, and compacting the replaced layers. After any defects are addressed, the laminate is cured.
Abstract:
Example systems and methods for non-destructive evaluation of depressions on a surface of an object are provided. One example system includes a measurement apparatus having a two-dimensional ultrasonic transducer array, a delay line material, a sealing member position such that the sealing member forms a cavity between the delay line material and a surface of the object, and a liquid inlet for injecting a liquid into the cavity. The example system also includes a processor configured to determine, using ultrasonic signals received from the two-dimensional ultrasonic transducer array, at least one property of a depression such as a dent on the surface of an object. The example system may also be configured to provide an output that is indicative of whether the at least one property of the depression satisfies a predetermined criterion. Another example system includes a compressible elastomeric delay line material that conforms to a surface of an object.
Abstract:
A fluidless roller probe device for performing structural integrity testing. A drum sensor has a shaft, a barrel-shaped inner portion mounted on the shaft, a sensor array having transmit elements and receive elements positioned on an outer surface of the inner portion, and an outer portion positioned over the sensor array. A shaft encoder is coupled to the shaft of the drum sensor. A support structure is coupled to the shaft of the drum sensor. Processing circuitry coupled to the transmit elements and receive elements is configured to activate, based on a signal from the shaft encoder, only that transmit element closest to the surface of the part under test and to calculate an output signal based on signals received from the receive elements. The transmit and receive elements are either ultrasonic transducers or eddy current coils. The transmit and receive elements are arranged in a lattice-like configuration.
Abstract:
There is provided a method that includes directing one or more infrared cameras at a compaction roller of a composite laying head of a composite layup machine. The one or more infrared cameras are mounted aft of the compaction roller. The method includes applying heat to a substrate by a heater. The heater is mounted forward of the compaction roller. The method further includes using the one or more infrared cameras, to obtain one or more infrared images of the compaction roller, during laying down of one or more composite tows of a composite layup onto the substrate by the compaction roller. The method further includes identifying, based on the one or more infrared images, one or more temperature profiles of the compaction roller, and analyzing identified temperature profiles, to determine one or more of, a layup quality of the composite layup, and a heat history of the composite layup.
Abstract:
An example system for inspecting railcar axles includes a flash source, an infrared camera, and a trigger sensor. The flash source is configured to apply a thermal pulse toward a surface of a railcar axle of a railcar wheelset, while the railcar wheelset is on a track. The infrared camera is configured to capture infrared data indicative of a thermal response of the surface of the railcar axle to the thermal pulse. The trigger sensor is configured to trigger the flash source to apply the thermal pulse based on a position of the railcar wheelset on the track. The example system can also include a processor configured to determine whether the captured infrared data is indicative of a crack on the surface of the railcar axle, and a vision camera configured to capture an image of the surface of the railcar axle.
Abstract:
Apparatus and methods for real-time fusion of data acquired using ultrasonic and eddy current area sensors during nondestructive examination. The ultrasonic data is acquired using an array of ultrasonic transducer elements configured to enable the production and display of a C-scan of a small area. The ultrasonic transducer array may be one- or two-dimensional. The eddy current sensor can be a single pair of induction coils, a multiplicity of coil pairs, or a coil configuration in which the numbers of drive coils and sense coils are not equal. The eddy current sensor is able to provide data about the test material, such as material thickness or conductivity, to complement the ultrasonic data or enable auto-setup of the ultrasonic inspection device.
Abstract:
Methods for identifying and quantifying wrinkles in a composite structure by processing infrared image data. The intensity and first and second time derivatives thereof at a particular time can be displayed as thermography line profiles on a graph in which the horizontal axis represents the pixel number across the field of view of an infrared camera. The spatial derivatives of the foregoing thermography line profiles can also be calculated and displayed as a graph. The maximum amplitude (i.e., height) of an out-of-plane wrinkle can be determined using a correlation/calibration curve that is constructed by correlating infrared image data with optical measurement data. In addition, the wavelength and maximum amplitude of an in-plane wrinkle can be measured directly from the thermography line profiles.