Abstract:
A turbofan engine includes a geared architecture for driving a fan about an axis. The geared architecture includes a sun gear rotatable about an axis, a plurality of planet gears driven by the sun gear and a ring gear circumscribing the plurality of planet gears. A carrier supports the plurality of planet gears. The geared architecture includes a power transfer parameter (PTP) defined as power transferred through the geared architecture divided by gear volume multiplied by a gear reduction ratio and is between about 430 and 645.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan section including a fan with a plurality of fan blades rotatable about an axis. Each of the plurality of fan blades includes a mid-span shroud and a speed change device in communication with the fan.
Abstract:
A turbine engine system includes a first lubricant circuit, a second lubricant circuit, a plurality of engine stages and a shaft. The first lubricant circuit includes a first turbine engine component that is fluidly coupled with a first lubricant heat exchanger. The second lubricant circuit includes a second turbine engine component that is fluidly coupled with a second lubricant heat exchanger, wherein the second lubricant circuit is fluidly separate from the first lubricant circuit. The first turbine engine component includes a gear train, which connects a first of the engine stages to a second of the engine stages. The second turbine engine component includes a bearing. The shaft is supported by the bearing and connected to one of the engine stages.
Abstract:
A fan blade comprises a main body having an airfoil extending between a leading edge and a trailing edge. The fan blade has at least one of a channel closed by a cover, and an end cap covering at least one of the leading and trailing edges. At least one of a cover and an end cap has a pair of opposed ends. A step is defined extending from at least one of a suction wall and a pressure wall of the airfoil, to an outer surface of the one of a cover and an end cap at one of the opposed ends, and the step being less than or equal to about 0.010 inch (0.0254 centimeter) in dimension.
Abstract:
A gas turbine engine includes a very high speed low pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for the high pressure turbine is at a ratio between about 0.5 and about 1.5.
Abstract:
A gas turbine engine comprises a fan rotor configured to be driven by a fan drive turbine through a first shaft and a gear reduction. The fan rotor is configured to deliver air into a bypass duct as bypass air and to deliver core air flow into a core engine where it reaches an upstream compressor rotor. The upstream compressor rotor is configured to be driven through a second shaft by an intermediate turbine rotor. A downstream compressor rotor is configured to be driven by an upstream turbine rotor through a third shaft. An overall pressure ratio across the upstream and downstream compressor rotors is greater than or equal to about 35.0 and less than or equal to about 75.0.
Abstract:
A gas turbine engine comprises a fan for delivering air into a bypass duct as bypass flow, into a core housing as core flow, with the core housing containing an upstream compressor rotor and a downstream compressor rotor. An overall pressure ratio is defined across the upstream and downstream compressor rotors. A bypass ratio is defined as a volume of air delivered as bypass flow compared to a volume of air delivered into the core housing. The overall pressure ratio is greater than or equal to about 45.0, and the bypass ratio is greater than or equal to about 11.0.
Abstract:
A gas turbine engine comprises a first turbine positioned upstream of a second intermediate turbine and a third turbine positioned downstream of the first and second turbines. A fan and three compressors, with an upstream one of the compressors connected to rotate with the fan rotor, and the third turbine driving the upstream compressor and the fan both through a gear reduction. A second intermediate compressor is driven by the second intermediate turbine rotor, and a third compressor downstream of the first and second compressors is driven by the first turbine rotor.
Abstract:
A gas turbine engine includes a fan section and a compressor section. The compressor section includes both a first compressor section and a second compressor section. A turbine section includes at least one turbine and driving the second compressor section and a fan drive turbine driving at least a gear arrangement to drive the fan section. A power ratio is provided by the combination of the first compressor section and the second compressor section, with the power ratio being provided by a first power input to the first compressor section and a second power input to the second compressor section, the power ratio being equal to, or greater than, about 1.0 and less than, or equal to, about 1.4.
Abstract:
A ratio of an outer diameter of a fan hub at a leading edge of the blades to an outer tip diameter of the blades at the leading edge is greater than or equal to about 0.24 and less than or equal to about 0.38. The fan tip diameter is greater than or equal to about 84 inches (213.36 centimeters) and a fan tip speed is less than or equal to about 1050 ft / second (320.04 meters / second). A bypass ratio, a gear ratio and an AN2 value are also claimed. The fan drive turbine has between three and six stages.