Nickel Based Superalloy With High Volume Fraction of Precipitate Phase

    公开(公告)号:US20170088926A1

    公开(公告)日:2017-03-30

    申请号:US14867232

    申请日:2015-09-28

    CPC classification number: C22F1/10 C22C19/056

    Abstract: A process includes solution heat treating a nickel based superalloy with greater than about 40% by volume of gamma prime precipitate to dissolve the gamma prime precipitate in the nickel based superalloy; cooling the nickel based superalloy to about 85% of a solution temperature measured on an absolute scale to coarsen the gamma prime precipitate such that a precipitate structure is greater than about 0.7 micron size; and wrought processing the nickel based superalloy at a temperature below a recrystallization temperature of the nickel based superalloy. A material includes a nickel based superalloy with greater than about 40% by volume of gamma prime precipitate in which the precipitate structure is greater than about 0.7 micron size.

    Multi-Shot Casting
    26.
    发明申请
    Multi-Shot Casting 有权
    多次射击

    公开(公告)号:US20150328681A1

    公开(公告)日:2015-11-19

    申请号:US14651926

    申请日:2013-12-13

    CPC classification number: B22D19/16 B22D27/045 F01D5/147 F05D2230/211

    Abstract: An alloy part is cast in a mold (280) having a part forming cavity (292, 294, 296). The method comprises pouring a first alloy into the mold. The pouring causes: a surface (550) of the first alloy in the part forming cavity to raise relative to the part forming cavity; a branch flow of the poured first alloy to pass upwardly through a first portion (304) of a passageway; and the branch flow to pass downwardly through a second portion (310), of the passageway; solidifying some of the first alloy in the passageway to block the passageway while at least some of the first alloy in the part forming cavity remains molten. A second alloy is poured into the mold atop the first alloy and solidified.

    Abstract translation: 合金部件铸造在具有部分形成腔体(292,294,296)的模具(280)中。 该方法包括将第一合金倒入模具中。 浇注原因:部件形成腔中的第一合金的表面(550)相对于部件形成腔体升高; 倾倒的第一合金的分支流向上通过通道的第一部分(304); 并且所述分支流向下通过所述通道的第二部分(310); 固化通道中的一些第一合金以阻挡通道,同时部件形成空腔中的至少一些第一合金保持熔融。 将第二合金倒入第一合金顶部的模具中并固化。

    Single crystal grain structure seals and method of forming

    公开(公告)号:US10830357B2

    公开(公告)日:2020-11-10

    申请号:US14695981

    申请日:2015-04-24

    Abstract: The present disclosure relates to advanced materials, particularly single crystal grain structures including the formation of single crystal grain structures. Single crystal grain structures offer improved mechanical properties when used with individual components. Improving mechanical properties is favorable for components that are used in applications with high temperature, pressure, and stress. In these applications, mechanical failure is extremely undesirable. Individual components, such as seals, can be designed with a single crystal grain structure in a preferred direction. By selecting a preferred direction, and orienting the single crystal grain structure accordingly, the single crystal grain structure can improve the component's mechanical properties. Single crystal grain structure seals and the method of forming the seals, therefore, offer various improvements to individual components, specifically when the components are designed for high temperature, pressure, and stress applications.

Patent Agency Ranking