Abstract:
An assembly for a gas turbine engine includes a frame, a mount, and a fairing. The mount is attached to the frame and the fairing is connected to the mount. The fairing and mount have mating anti-deflection features that engage to prevent circumferential movement of the fairing relative to the frame.
Abstract:
A gas turbine engine assembly includes a second module connected axially to a first module along a joint, and an annular cavity defined between the first module and the second module. The seal assembly is disposed proximate the cavity, and includes a seal support ring, a first finger seal, and a second finger seal. The support ring has a backing portion secured to a radial wall of to the first module, and a first seal land extending axially into the cavity away from the first module. The first finger seal has a free end adapted to contact an inner side of the first seal land. The second finger seal is adapted to seal a radially outer portion of the annular cavity
Abstract:
A gas turbine engine assembly includes a first module, a second module rotatable about a center line of the gas turbine engine and fluidly coupled with the first module, and a multi-purpose seal support. The multi-purpose seal support includes an aft end secured to the first module, and a forward end disposed proximate the second module. The forward end has a discourager portion, a seal portion, and a meshing portion.
Abstract:
An assembly for a gas turbine engine includes a first component, a second component, and a first mount. The first mount includes an annular body that is connected to the first component and a plurality of circumferentially spaced tabs extending from the body. The tabs are connected to the second component and are deflectable to allow the second component to move relative to the first component.
Abstract:
An assembly for a gas turbine engine includes a first casing, a fairing, and a multi-piece heat shield assembly. The fairing is disposed adjacent the first casing. The multi-piece heat shield assembly includes a first shield mounted to the first casing and extending between the first casing and the fairing, and a second shield mounted to the fairing and extending between the fairing and the first casing.
Abstract:
A gas turbine engine includes a casing, a fairing, and a heat shield. The fairing is annularly shaped and disposed adjacent the casing. The heat shield is connected to the casing and includes a first portion and a second portion. The first portion is generally cylindrically shaped and extends between the fairing and the casing and the second portion extends generally radially away from the casing and the first portion toward the fairing.
Abstract:
A lubrication system for a fan drive planetary gear system according to an exemplary aspect of the present disclosure includes, among other things, a stationary first bearing configured to receive a lubricant from a lubricant input, the stationary first bearing is located adjacent a fan drive shaft. A second bearing is configured to rotate with the fan drive shaft, the first bearing engages the second bearing and is configured to transfer the lubricant from the first bearing to the second bearing and into at least one fluid passage in the fan drive shaft. A conduit fluidly connects the at least one passage in the fan drive shaft with at least one component on the fan drive gear system.
Abstract:
A borescope plug assembly includes a borescope plug having a shaft section and a tip section, a bushing engageable with the shaft section and a seal engageable with the tip section.
Abstract:
An assembly for a gas turbine engine includes a component and a finger seal. The component has a first surface and a second surface. The first surface has an elevation that differs from an elevation of the second surface. The finger seal is connected to the first surface and extends above the second surface. The disposition of the second surface relative to the finger seal creates a cavity below a curved portion of the finger seal.